halo cmes
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 1)

Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 431
Author(s):  
Yufen Zhou ◽  
Xueshang Feng

In this paper, using a 3D magnetohydrodynamics (MHD) numerical simulation, we investigate the propagation and interaction of the three halo CMEs originating from the same active region during 4–5 November 1998 from the Sun to Earth. Firstly, we try to reproduce the observed basic features near Earth by a simple spherical plasmoid model. We find that the first component of the compound stream at 1 AU is associated to the first CME of the three halo CMEs. During the propagation in the interplanetary space, the third CME overtakes the second one. The two CMEs merge to a new, larger entity with complex internal structure. The magnetic field of the first CME in the three successive CMEs event is compressed by the following complex ejecta. The interaction between the second and third CME results in the deceleration of the third CME and the enhancement of the density, total magnetic field and south component of the magnetic field. In addition we study the contribution of a single CME to the final simulation results, as well as the effect of the CME–CME interactions on the propagation of an isolated CME and multiple CMEs. This is achieved by analysing a single CME with or without the presence of the preceding CMEs. Our results show that the CME moves faster in a less dense, faster medium generated by the interaction of the preceding CME with the ambient medium. In addition, we show that the CME–CME interactions can greatly alter the kinematics and magnetic structures of the individual events.


Solar Physics ◽  
2021 ◽  
Vol 296 (4) ◽  
Author(s):  
A. Shanmugaraju ◽  
P. Pappa Kalaivani ◽  
Y.-J. Moon ◽  
O. Prakash

2021 ◽  
Author(s):  
Emiliya Yordanova ◽  
Mateja Dumbovic ◽  
Manuela Temmer ◽  
Camilla Scolini ◽  
Jasmina Magdalenic ◽  
...  

<p>Halo coronal mass ejections (CMEs) are one of the most effective drivers of intense geomagnetic storms. Despite the recent advances in space weather forecasting, the accurate arrival prediction of halo CMEs remains a challenge.  This is because in general CMEs interact with the background solar wind during their propagation in the interplanetary space. In addition, in the case of halo CMEs, the accurate estimation of their kinematics is difficult due to projection effects in the plane-of-sky.</p><p>In this study, we are revisiting the arrival of twelve geoeffective Earth-directed fast halo CMEs using an empirical and a numerical approaches. For this purpose we refine the input to the Drag-based Model (DBM) and to the EUropean Heliospheric Forecasting Information Asset (EUHFORIA), which are recently available for users from the ESA Space Situational Awareness Portal (http://swe.ssa.esa.int).</p><p>The DBM model has been tested using different values for the input drag parameter.  On average, the predicted arrival times are confined in the range of ± 10 h. The closest arrival to the observed one has been achieved with a drag value higher than the recommended for fast CMEs. Setting a higher drag also helped to obtain a closer to the observed CME arrival speed prediction. These results suggest that the exerted solar wind drag was higher than expected. Further, we are searching for clues about the CME propagation by performing EUHFORIA runs using the same CME kinematics. Preliminary results show that both models perform poorly for CMEs that have possibly undergone CME-CME interaction, underlying again the importance of taking into account the state of the interplanetary space in the CME forecast.</p>


2021 ◽  
Author(s):  
Ryun Young Kwon

<p>We present a novel method to derive the shock density compression ratio of coronal shock waves that are occasionally observed as halo coronal mass ejections (CMEs). Our method uses the three-dimensional (3-D) geometry and enables us to access the reliable shock density compression ratio. We show the 3-D properties of coronal shock waves seen from multiple vantage point observations, i.e., geometry, kinematics, and compression ratio (Mach number). The significant findings are as follows: (1) Halo CMEs are the manifestation of spherically shaped fast-mode waves/shocks, rather than a matter of the projection of expanding flux ropes. The footprints of halo CMEs on the coronal base are the so-called EIT/EUV waves. (2) These spherical fronts arise from a driven shock (bow- or piston-type) close to the CME nose, and it is gradually becoming a freely propagating (decaying) fast-mode shock wave at the flank. (3) The shock density compressions peak around the CME nose and decrease at larger position angles (flank). (4) Finally, the supercritical region extends over a large area of the shock and lasts longer than past reports.  These results offer a simple unified picture of the different manifestations for CME-associated (shock) waves, such as EUV waves and SEP events observed in various regimes and heliocentric distances. We conclude that CME shocks can accelerate energetic particles in the corona over extended spatial and temporal scales and are likely responsible for the wide longitudinal distribution of these particles in the inner heliosphere.</p>


2020 ◽  
Vol 38 (3) ◽  
pp. 657-681
Author(s):  
Pedro Corona-Romero ◽  
Pete Riley

Abstract. Earth-directed coronal mass ejections (CMEs) are of particular interest for space weather purposes, because they are precursors of major geomagnetic storms. The geoeffectiveness of a CME mostly relies on its physical properties like magnetic field and speed. There are multiple efforts in the literature to estimate in situ transit profiles of CMEs, most of them based on numerical codes. In this work we present a semi-empirical formalism to compute in situ transit profiles of Earth-directed fast halo CMEs. Our formalism combines analytic models and empirical relations to approximate CME properties as would be seen by a spacecraft near Earth's orbit. We use our formalism to calculate synthetic transit profiles for 10 events, including the Bastille Day event and 3 varSITI Campaign events. Our results show qualitative agreement with in situ measurements. Synthetic profiles of speed, magnetic intensity, density, and temperature of protons have average errors of 10 %, 27 %, 46 %, and 83 %, respectively. Additionally, we also computed the travel time of CME centers, with an average error of 9 %. We found that compression of CMEs by the surrounding solar wind significantly increased our uncertainties. We also outline a possible path to apply this formalism in a space weather forecasting tool.


Author(s):  
B. Schmieder ◽  
R.‐S. Kim ◽  
B. Grison ◽  
K. Bocchialini ◽  
R.‐Y. Kwon ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Brigitte Schmieder ◽  
Stefaan Poedts ◽  
Christine Verbeke

<p>In 2002 (Cycle 23), a weak impact on the magnetosphere of the Earth has been reported for six halo CMEs related to six X-class flares and with velocities higher than 1000 km/s. The registered Dst minima are all between -17 nT and -50 nT.  A study of the Sun-Earth chain of phenomena related to these CMEs reveals that four of them have a source at the limb and two have a source close to the solar disk center (Schmieder et al., 2020). All of CME magnetic clouds had a low z‑component of the magnetic field, oscillating between positive and negative values.</p><p>We performed a set of EUHFORIA simulations in an attempt to explain the low observed Dst and the observed magnetic fields. We study the degree of deviation of these halo CMEs from the Sun-Earth axis and as well as their deformation and erosion due to their interaction with the ambient solar wind (resulting in magnetic reconnections) according to the input of parameters and their chance to hit other planets. The inhomogeneous nature of the solar wind and encounters  are also important parameters influencing the impact of CMEs on planetary magnetospheres.</p><p> </p>


2020 ◽  
Author(s):  
Pedro Corona-Romero ◽  
Pete Riley

Abstract. Earth-directed coronal mass ejections (CMEs) are of an important interest for space weather purposes, because they are precursors of the major geomagnetic storms. The geoeffectiveness of a CME mostly relies on its physical properties like magnetic field and speed. There are multiple efforts in the literature to estimate in situ transit profiles of CMEs, most of them based on numerical codes. In this work we present a semi-empirical formalism to compute in situ transit profiles of Earth-directed fast halo CMEs. Our formalism combines analytic models and empirical relations to approximate CME properties as would be seen by a spacecraft near the Earth's orbit. We use our formalism to calculate synthetic transit profiles for 10 events, including the Bastille day event and three varSITI Campaign events. Our results showed qualitative agreement with in situ measurements. Synthetic profiles of speed, magnetic intensity, density and temperature of protons had average errors of 10 %, 27 %, 46 % and 83 %, respectively. Additionally, we also computed the travel time of CME centers, with an average error of 9 %. We found that compression of CMEs by the surrounding solar wind significantly increased our uncertainties. We also outline a possible path to apply this formalism into a space weather forecasting tool.


2019 ◽  
pp. 1860-1867
Author(s):  
Zeinab F. Hussein

In this study, we report a statistical study for the relationship between coronal mass ejections (CMEs) and sunspot number (SSN) that were registered during the period 2008-2017 for the solar cycle 24. SSN was extracted from Sunspot Index and Long-term Solar Observations (SILSO), while CMEs number from observations made by the Large Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric Observatory mission (SOHO). The present period was adopted to conduct the investigation and obtain the mutual correlation between SSN and CMEs. The relationship between CME, the speed of halo CME, and partial halo CMEs for solar cycle 24 were studied. The analysis of results indicated that the average speed of halo CMEs is almost faster than the average speed of partial halo CMEs.Test results of the annual correlation between SSN and CMEs are simple and can be represented by a linear regression equation. Finally, Gaussian fit as a function of time was performed to compare behavior of numbers the CME and SSN with the years and the results show that the center of the peaks agrees with 2014. 


Sign in / Sign up

Export Citation Format

Share Document