scholarly journals Novel Power Generation System for Low Temperature Heat Sources

Author(s):  
Behrooz Shahriari ◽  
Ehsan Seyfali ◽  
Hamid Reza Azizian
Author(s):  
Zemin Bo ◽  
Zhenkun Sang ◽  
Qianqian Zhang ◽  
Yiwu Weng

The radial turbine is a key component of the Organic Rankine Cycle (ORC) power generation system. In order to improve the performance of ORC system for low temperature heat sources, a 150kW radial turbine using R600a has been designed and analyzed. First, the aerodynamic calculation of the radial turbine was conducted and one-dimensional aerodynamic parameters were obtained. Then three-dimensional CFD numerical analysis has been conducted to optimize the geometric design of the radial turbine. The results show the distribution of the flow field around the blades at different height and streamline distribution from leading edge to the trailing edge. At last, the effect of rotation speed on the performance of radial turbine was analyzed. The results can provide basic data for the design of radial turbine of ORC power generation system for low temperature heat sources.


2014 ◽  
Vol 3 (3) ◽  
pp. 34-56 ◽  
Author(s):  
Vijay Chauhan ◽  
P. Anil Kishan ◽  
Sateesh Gedupudi

A combined refrigeration and power cycle, which uses ammonia-water as the working fluid, is proposed by combining Rankine and vapour absorption cycles with an advantage of varying refrigeration capacity to power output ratio. The study investigates the usage of low temperature heat sources for the cycle operation. Results of parametric analysis are presented, which show the scope for optimization. Results of thermodynamic optimization of the cycle for second law efficiency performed using genetic algorithm for different ambient temperatures are also presented. The cycle shows good potential for obtaining refrigeration and power generation.


2016 ◽  
Vol 2016.19 (0) ◽  
pp. T03
Author(s):  
Fujio TODA ◽  
Takayuki YAMAMOTO ◽  
Ryo SHIMEMURA ◽  
Hayato SATO ◽  
Motoki FUNAYAMA ◽  
...  

Author(s):  
Jahar Sarkar ◽  
Souvik Bhattacharyya

This study presents the potential of ammonia as a working fluid in transcritical Rankine cycle for power generation using both high and low temperature heat sources. Higher heat capacity value and superior heat transfer properties of ammonia compared to water are the motivating factors behind its use as a working fluid. A thermodynamic analysis for the ammonia based transcritical Rankine cycle and its comparison with the water based Rankine cycle is presented. Analyses with several cycle modifications are also presented to study the thermal efficiency augmentation. It is observed that an optimum high side pressure exists for near critical operation. In case of low temperature heat sources such as solar energy or waste heat, where water based systems are not suitable, ammonia based Rankine cycle is applicable with attractive thermal efficiency, although cycle modification is not possible. The results with high temperature heat source such as boiler or nuclear reactor, where the turbine outlet is in superheated zone, show that simple ammonia systems yield lower efficiency than water, although a recompression cycle with regenerative heat exchangers exhibits higher efficiency than water. Significant thermal efficiency improvement can be achieved by increasing the high side cycle pressure. Recompression Rankine cycle can be a potential alternative with proper design measures taken to avoid toxicity and flammability.


Sign in / Sign up

Export Citation Format

Share Document