Combined Cycle for Power Generation and Refrigeration Using Low Temperature Heat Sources

2014 ◽  
Vol 3 (3) ◽  
pp. 34-56 ◽  
Author(s):  
Vijay Chauhan ◽  
P. Anil Kishan ◽  
Sateesh Gedupudi

A combined refrigeration and power cycle, which uses ammonia-water as the working fluid, is proposed by combining Rankine and vapour absorption cycles with an advantage of varying refrigeration capacity to power output ratio. The study investigates the usage of low temperature heat sources for the cycle operation. Results of parametric analysis are presented, which show the scope for optimization. Results of thermodynamic optimization of the cycle for second law efficiency performed using genetic algorithm for different ambient temperatures are also presented. The cycle shows good potential for obtaining refrigeration and power generation.

Author(s):  
Jahar Sarkar ◽  
Souvik Bhattacharyya

This study presents the potential of ammonia as a working fluid in transcritical Rankine cycle for power generation using both high and low temperature heat sources. Higher heat capacity value and superior heat transfer properties of ammonia compared to water are the motivating factors behind its use as a working fluid. A thermodynamic analysis for the ammonia based transcritical Rankine cycle and its comparison with the water based Rankine cycle is presented. Analyses with several cycle modifications are also presented to study the thermal efficiency augmentation. It is observed that an optimum high side pressure exists for near critical operation. In case of low temperature heat sources such as solar energy or waste heat, where water based systems are not suitable, ammonia based Rankine cycle is applicable with attractive thermal efficiency, although cycle modification is not possible. The results with high temperature heat source such as boiler or nuclear reactor, where the turbine outlet is in superheated zone, show that simple ammonia systems yield lower efficiency than water, although a recompression cycle with regenerative heat exchangers exhibits higher efficiency than water. Significant thermal efficiency improvement can be achieved by increasing the high side cycle pressure. Recompression Rankine cycle can be a potential alternative with proper design measures taken to avoid toxicity and flammability.


Author(s):  
D. Y. Goswami ◽  
Gunnar Tamm ◽  
Sanjay Vijayaraghavan

A new thermodynamic cycle has been developed for the simultaneous production of power and cooling from low temperature heat sources. The proposed cycle combines the Rankine and absorption refrigeration cycles, providing power and cooling in desired ratios to best suit the application. A binary mixture of ammonia and water is used as the working fluid, providing a good thermal match with the sensible heat source over a range of boiling temperatures. Due to its low boiling point, the ammonia-rich vapor expands to refrigeration temperatures while work is extracted through the turbine. Absorption condensation of the vapor back into the bulk solution occurs near ambient temperatures. The proposed cycle is suitable as a bottoming cycle using waste heat from conventional power generation systems, or can utilize low temperature solar or geothermal renewable resources. The cycle can be scaled to residential, commercial or industrial uses, providing power as the primary goal while satisfying some of the cooling requirements of the application. The cycle is under both theoretical and experimental investigations. Initial parametric studies of how the cycle performs at various operating conditions showed the potential for the cycle to be optimized. Optimization studies performed over a range of heat source and heat sink temperatures showed that the cycle could be optimized for maximum work or cooling output, or for first or second law efficiencies. Depending on the heat source temperatures, as much as half of the output may be obtained as refrigeration under optimized conditions, with refrigeration temperatures as low as 205 K being achievable. Maximum second law efficiencies over 60% have been found with the heat source between 350 and 450 K. An experimental system was constructed to verify the theoretical results and to demonstrate the feasibility of the cycle. The investigation focused on the vapor generation and absorption processes, setting up for the power and refrigeration studies to come later. The turbine was simulated with an equivalent expansion process in this initial phase of testing. Results showed that the vapor generation and absorption processes work experimentally, over a range of operating conditions and in simulating the sources and sinks of interest. The potential for combined work and cooling output was evidenced in operating the system. Comparison to ideally simulated results verified that there are thermal and flow losses present, which were assessed to make both improvements in the experimental system and modifications in the simulations to include realistic losses.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 480 ◽  
Author(s):  
Gábor Györke ◽  
Axel Groniewsky ◽  
Attila Imre

One of the most crucial challenges of sustainable development is the use of low-temperature heat sources (60–200 °C), such as thermal solar, geothermal, biomass, or waste heat, for electricity production. Since conventional water-based thermodynamic cycles are not suitable in this temperature range or at least operate with very low efficiency, other working fluids need to be applied. Organic Rankine Cycle (ORC) uses organic working fluids, which results in higher thermal efficiency for low-temperature heat sources. Traditionally, new working fluids are found using a trial-and-error procedure through experience among chemically similar materials. This approach, however, carries a high risk of excluding the ideal working fluid. Therefore, a new method and a simple rule of thumb—based on a correlation related to molar isochoric specific heat capacity of saturated vapor states—were developed. With the application of this thumb rule, novel isentropic and dry working fluids can be found applicable for given low-temperature heat sources. Additionally, the importance of molar quantities—usually ignored by energy engineers—was demonstrated.


Author(s):  
Bin Zheng ◽  
Yiwu Weng

This paper presents a combined power and ejector refrigeration cycle for low temperature heat sources. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. It can be used as an independent cycle powered by the low temperature sources, such as solar energy, geothermal energy, or as a bottom cycle of the conventional power plant for the recovery of low temperature waste heat. A program was developed to calculate the performance of the combined cycle. Several substances were selected as the working fluids including R113, R123, R245fa, R141b and R600. Simulation results show that R141b has the highest cycle efficiency, followed by R123, R113, R600 and then R245fa. While the working fluids are calculated by per unit, R600 can produce more power and refrigeration outputs due to the large latent heat. Simulations at different generating temperatures, evaporating temperatures and condensing temperatures were also discussed.


Sign in / Sign up

Export Citation Format

Share Document