scholarly journals Advance Signaling Cost for Multicast Fast Reroute Proxy Mobility Management

2016 ◽  
Vol 9 (25) ◽  
Author(s):  
Azana Hafizah Mohd Aman ◽  
Aisha-Hassan A. Hashim ◽  
Azween Abdullah ◽  
Huda Adibah Mohd Ramli ◽  
Shayla Islam
Author(s):  
Sajal Saha ◽  
Asish K. Mukhopadhyay ◽  
Anup Kumar Bhattacharjee

Selection of a MIMO (Multiple Input Multiple Output) antenna to achieve high throughput, minimize errors, and optimize data speed is an important design issue. Radio resource management to provide Quality of Service (QoS) in WiMAX involves dynamic scheduling of resources according to the user’s priority, based classes Platinum, Gold, Silver, and Bronze. Mobility and handoff management in WiMAX is another important issue involving location update, signaling traffic and service delay, and call blocking and dropping. This chapter focuses on some issues concerning MIMO configuration to improve transmit diversity, developing an appropriate scheduling algorithm to improve QoS, and presenting a novel mobility management protocol THMIP (Three Level Hierarchical Mobile IP) in IEEE 802.16e environment to reduce signaling cost with respect to QoS parameters like throughput, end-to-end delay, interference, path loss, bit error rate, and Signal-to-Noise Ratio (SNR). For the simulation, the authors use OPNET Modeler and MATLAB.


Author(s):  
Adnan J. Jabir

<p>Mobility management protocols are very essential in the new research area of Internet of Things (IoT) as the static attributes of nodes are no longer dominant in the current environment. Proxy MIPv6 (PMIPv6) protocol is a network-based mobility management protocol, where the mobility process is relied on the network entities, named, Mobile Access Gateways (MAGs) and Local Mobility Anchor (LMA). PMIPv6 is considered as the most suitable mobility protocol for WSN as it relieves the sensor nodes from participating in the mobility signaling. However, in PMIPv6, a separate signaling is required for each mobile node (MN) registration, which may increase the network signaling overhead and lead to increase the total handoff latency. The bulk binding approaches were used to enhance the mobility signaling for MNs which are moving together from one MAG to another by exchanging a single bulk binding update message. However, in some cases there might be several MNs move at the same time but among different MAGs. In this paper, a bulk registration scheme based on the clustered sensor PMIPv6 architecture is proposed to reduce the mobility signaling cost by creating a single bulk message for all MNs attached to the cluster. Our mathematical results show that the proposed bulk scheme enhances the PMIPv6 performance by reducing the total handoff latency.</p>


2017 ◽  
Vol 23 (11) ◽  
pp. 10986-10990
Author(s):  
Azana Hafizah Mohd Aman ◽  
Aisha-Hassan A Hashim ◽  
Azween Abdullah ◽  
Huda Adibah Mohd Ramli
Keyword(s):  

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Jianfeng Guan ◽  
Ilsun You ◽  
Changqiao Xu ◽  
Hongke Zhang

Internet of Things (IoT) has been booming with rapid increase of the various wearable devices, vehicle embedded devices, and so on, and providing the effective mobility management for these IoT devices becomes a challenge due to the different application scenarios as well as the limited energy and bandwidth. Recently, lots of researchers have focused on this topic and proposed several solutions based on the combination of IoT features and traditional mobility management protocols, in which most of these schemes take the IoT devices as mobile networks and adopt the NEtwork MObility (NEMO) and its variants to provide the mobility support. However, these solutions are in face of the heavy signaling cost problem. Since IoT devices are generally combined to realize the complex functions, these devices may have similar movement behaviors. Clearly analyzing these characters and using them in the mobility management will reduce the signaling cost and improve the scalability. Motivated by this, we propose a PMIPv6-based group binding update method. In particular, we describe its group creation procedure, analyze its impact on the mobility management, and derive its reduction ratio in terms of signaling cost. The final results show that the introduction of group binding update can remarkably reduce the signaling cost.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
J. Carmona-Murillo ◽  
I. Soto ◽  
F. J. Rodríguez-Pérez ◽  
D. Cortés-Polo ◽  
J. L. González-Sánchez

Mobile Internet data traffic has experienced an exponential growth over the last few years due to the rise of demanding multimedia content and the increasing number of mobile devices. Seamless mobility support at the IP level is envisioned as a key architectural requirement in order to deal with the ever-increasing demand for data and to efficiently utilize a plethora of different wireless access networks. Current efforts from both industry and academia aim to evolve the mobility management protocols towards a more distributed operation to tackle shortcomings of fully centralized approaches. However, distributed solutions face several challenges that can result in lower performance which might affect real-time and multimedia applications. In this paper, we conduct an analytical and simulated evaluation of the main centralized and proposed Distributed Mobility Management (DMM) solutions. Our results show that, in some scenarios, when users move at high speed and/or when the mobile node is running long-lasting applications, the DMM approaches incur high signaling cost and long handover latency.


2014 ◽  
Vol 11 (3) ◽  
pp. 943-960 ◽  
Author(s):  
Mohammadreza Shahamabadi ◽  
Borhanuddin Ali ◽  
Nor Noordin ◽  
Mohd Rasid ◽  
Pooria Varahram ◽  
...  

IPv6 Low-power Personal Area Networks (6LoWPANs) have recently found renewed interest because of the emergence of Internet of Things (IoT). Mobility support in 6LoWPANs for large-scale IP-based sensor technology in future IoT is still in its infancy. The hospital wireless network is one important 6LoWPAN application of the IoT, it keeps continuous monitoring of vital signs of moveing patients. Proper mobility management is needed to maintain connectivity between patient nodes and the hospital network. In this paper, first we survey IPv6 mobility protocols and propose a solution for a hospital architecture based on 6LoWPAN technology. Moreover, we discuss an important metric like signaling overload to optimize the power consumption and how it can be optimized through the mobility management. This metric is more effective on the mobile router as a coordinator in network mobility since a mobile router normally constitutes a bottleneck in such a system. Finally, we present our initial results on a reduction of the mobility signaling cost and the tunneling traffic on the mobile PAN.


2017 ◽  
Vol 6 (4) ◽  
pp. 311-316
Author(s):  
Aisha Hashim ◽  
Azana Hafizah Mohd Aman ◽  
Huda Adibah Mohd Ramli

The objective of this paper is to present performance analysis of a new enhanced mobile multicast network mobility management scheme. The initial developed network mobility management called Proxy Mobile IPv6 (PMIPv6) is based on unicast network support. This paper enabled multicast support in network mobility management and named it as MPMIPv6. Additionally this enhancement also provides better network performance with the new context transfer operations and fast reroute operations. In brief, this paper also describes other current mobile multicast schemes. The new scheme is evaluated using mathematical analysis and NS3.19 simulator. Theoretically this scheme reduces service recovery time, total signalling cost, handover latency, and packet loss for multicast communication. However for this paper, the analysed parameters are throughput and handover latency. Both mathematical and simulation results exhibit better network performance   for multicast environment compared to the standard benchmark scheme.


Sign in / Sign up

Export Citation Format

Share Document