signaling cost
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 7)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Author(s):  
robin cyriac ◽  
Saleem Durai MA

Abstract Increase in mobile nodes has brought new challenges to IoT’s routing protocol-RPL. Mobile nodes (MN) bring new possibilities as well as challenges to the network. MN creates frequent route disruption, energy loss and increases end-to-end delay in the network. This could be solved by improving RPL to react faster to route failures through route prediction, while keeping energy expenditure for this process in reasonable limits. In this context a new Mobility Energy and Queue Aware-RPL (MEQA-RPL) is proposed that have the capability to sense route failure and to identify proactively the next possible route before the current route fails. While identifying the next route, MEQA-RPL employs constraint check on energy and queue availability to guarantee QoS for MN and better lifetime for the network. When compared to RPL with mobility support our model reduce average signaling cost by 31%, handover delay by 32% and improve packet delivery ratio by 17%. We run simulations with multiple mobile nodes which have also shown promising results on aforementioned parameters.


2021 ◽  
Vol 11 (15) ◽  
pp. 6823
Author(s):  
Jang Hyun Baek

An efficient location registration scheme is essential to continuously accommodate the increasing number of mobile subscribers and to offer a variety of multimedia services with good quality. The objective of this study was to analyze the optimal size for the location area of a distance-based registration (DBR) scheme by varying the number of location areas on a cell-by-cell basis, not on a ring-by-ring basis. Using our proposed cell-by-cell distance-based registration scheme with a random walk mobility model, a variety of circumstances were analyzed to obtain the optimal number of cells for location area for minimizing the total signaling cost on radio channels. Analysis results showed that the optimal number of cells for location area was between 4 and 7 in most cases. Our cell-by-cell distance-based location registration scheme had less signaling cost than an optimal ring-by-ring distance-based location registration scheme with an optimal distance threshold of 2 (the optimal number of cells for location area was 7). Therefore, when DBR is adopted, it must be implemented with an LA increasing on a cell-by-cell basis to achieve optimal performance.


2021 ◽  
Author(s):  
Sureshkumar A ◽  
Surendran D

Abstract Nowadays, a massive amount of data leads to cause network traffic and inflexible mobility in future mobile networks. A new Group Mobility Model (GMM) named MoMo is introduced that addresses the issue of the aforementioned problems. Even though, software defined network (SDN) is functional with network-rooted mobility protocols that enhance the network efficiency. Some existing network-rooted mobility administration methods still undergo handover delay, packet loss, and high signaling cost through handover processing. In this research work, SDN-based fast handover for GMM is proposed. Here, the neighbor number of evolving node transition probabilities of the mobile node (MN) and their obtainable resource probabilities are estimated. This makes a mathematical framework to decide the preeminent number of the evolving nodes and then allot these to mobile nodes virtually with all associations finished by the exploit of Open-Flow tables. The performance examination demonstrates that the proposed SDN rooted GMM technique has the enhanced performance than the conventional handover process and further technique by handover latency, signaling cost, network throughput, and packet loss.


2020 ◽  
Vol 10 (6) ◽  
pp. 2144
Author(s):  
Chan Haeng Lee ◽  
Ji Su Park

In upcoming smart urban environments, various things can be interconnected, and the Internet of Things (IoT) can be used to construct a safer and more convenient urban environment. Things in the IoT need an addressing system that can uniquely identify each one; internet protocol (IP) addresses can be used for this purpose. The IP address the two roles of an identifier and a locator. However, this binding has problems related to mobility and multihoming, and it is hard to deploy on a legacy IP system because of some limitations of sensor devices. To solve the problem, we propose a design for software-defined networking (SDN)-based identifier–locator separation architecture on IoT networks. In the proposed scheme, Internet Protocol version 6(IPv6)-based addresses are used for the identifiers and locators. The network is partitioned into a host identity domain for local routing and an IP domain for global routing. The host identity domain operates as an overlaid network over the IP domain, and it makes the unrouteable identifiers routable with a distributed hash table (DHT)-based routing strategy. For the evaluation of the proposed scheme, a packet forwarding cost and signaling cost model is calculated, and the results show that the proposed scheme is conjugable to an IoT network environment.


Author(s):  
Muktar Hussaini ◽  
Shahrudin Awang Nor ◽  
Amran Ahmad

Named Data Networking (NDN) is a clean-slate future Internet architecture proposed to support content mobility. However, content producer mobility is not supported fundamentally and faces many challenges such as, high handoff latency, signaling overhead cost and unnecessary Interest packet losses. Hence, many approaches indirection-based approach, mapping-based approach, locator-based approach and control/data plane-based approach were proposed to address these problems. Mapping-based and control/data plane-based approach deployed servers for name resolution serveces to provide optimal data path after handoff, but introduces high handoff latency and signalling overhead cost. Indirection-based and locator-based approach schemes provide normal handoff delay, but introduces sub-optimal or tiangular routing path. Therefore, there is needs to provide substantial producer mobility support that minimizes the handoff latency, signaling cost and improve data packets delivery via optimal path once a content producer relocates to new location. This paper proposed a scheme that provides optimal data path using mobility Interest packets and broadcasting strategy. Analytical investigation result shows that our proposed scheme outperforms existing approaches in terms of handoff latency, signaling cost and path optimization.


Author(s):  
Adnan J. Jabir

<p>Mobility management protocols are very essential in the new research area of Internet of Things (IoT) as the static attributes of nodes are no longer dominant in the current environment. Proxy MIPv6 (PMIPv6) protocol is a network-based mobility management protocol, where the mobility process is relied on the network entities, named, Mobile Access Gateways (MAGs) and Local Mobility Anchor (LMA). PMIPv6 is considered as the most suitable mobility protocol for WSN as it relieves the sensor nodes from participating in the mobility signaling. However, in PMIPv6, a separate signaling is required for each mobile node (MN) registration, which may increase the network signaling overhead and lead to increase the total handoff latency. The bulk binding approaches were used to enhance the mobility signaling for MNs which are moving together from one MAG to another by exchanging a single bulk binding update message. However, in some cases there might be several MNs move at the same time but among different MAGs. In this paper, a bulk registration scheme based on the clustered sensor PMIPv6 architecture is proposed to reduce the mobility signaling cost by creating a single bulk message for all MNs attached to the cluster. Our mathematical results show that the proposed bulk scheme enhances the PMIPv6 performance by reducing the total handoff latency.</p>


Author(s):  
Muktar Hussaini ◽  
Shahrudin Awang Nor ◽  
Amran Ahmad

<p>Named Data Networking is a consumer-driven network that supports content consumer mobility due to the nature of in-network catching. The catching suppressed unnecessary Interest packets losses by providing an immediate copy of the data and consumer-driven nature influencedthe mobile consumer to resend unsatisfied Interest packet immediately after the handoff. Once the producer moves to a new location, the name prefix changed automatically after handoff to the new router or point of attachment. The entire network lacks the knowledge of producer movement unless if the producer announces its new prefix to update the FIBs of intermediate routers. Lack of producer’s movement knowledge causes an increase of handoff latency, signaling overhead cost, Interests packets losses, poor utilization of bandwidth and packets delivery. Therefore, there is needs to provide substantial producer mobility support to minimize the handoff latency, handoff signaling overhead cost, reduce the unnecessary Interest packets loss to improve data packets delivery once a content producer relocated. In this paper, broadcasting strategy is introduced to facilitate the handoff procedures and update the intermediate routers about the producer movement. Hence, analytical investigation result of this paper addresses the deficiency of Kite scheme by minimizing handoff signaling cost and provides data path optimization after the handoff.<strong></strong></p>


Author(s):  
Sanjay Kumar Biswash ◽  
Mahasweta Sarkar ◽  
Dhirendra Kumar Sharma

In this paper, we are proposing a bio-inspired location management (LM) technique for personal communication system (PSC). It is based on artificial immune system (AIS), with self-adaptation and self-updates attributes in order to perform the location management, and work helps to achieve the better quality of service (QoS) and quality of experience (QoE) for the mobile users. Here, we are suggesting a modified mobile switching center (MSC) architecture, and an adaptive self-modified location management procedure. The proposed mobile switching centre architecture has an advantage of rule-based and fact-based system to store the rules and fact related to location management procedure, and it shows the intelligent behavior of system. The mobile switching centre calculates the best method for location management and rule-base system trigged the rules to perform the techniques. The system stores the result (techniques for location management) in fact-base system for future use. The efficiency and effectiveness of the proposed techniques been analyzed, and it observed that the proposed system has 45-50% improvement in performance over the current location management techniques. Here, we are taking the performance parameters such as signaling cost, database update cost, overhead measurement, mobility management cost.


2017 ◽  
Vol 23 (11) ◽  
pp. 10986-10990
Author(s):  
Azana Hafizah Mohd Aman ◽  
Aisha-Hassan A Hashim ◽  
Azween Abdullah ◽  
Huda Adibah Mohd Ramli
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document