manganese zinc ferrite
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 34)

H-INDEX

23
(FIVE YEARS 6)

2021 ◽  
Vol 11 (23) ◽  
pp. 11183
Author(s):  
Laura Maria Slavu ◽  
Rosaria Rinaldi ◽  
Riccardo Di Corato

Besides the study and the medical application of iron oxide nanoparticles, ferrites produced with zinc and manganese are of particular interest for their properties. The introduction of these elements into the crystalline structure of the magnetic particle generates some changes in the material properties, enhancing their potential use in theranostic applications. This review will cover the most important aspects of the preparation of these materials, taking into account the different methods of synthesis, and will analyze the most promising results in their use in MRI, magnetic hyperthermia and other emerging applications.


Author(s):  
Hassan Waqas ◽  
Shan Ali Khan ◽  
Taseer Muhammad ◽  
Sumeira Yasmin

Abstract Inspired by several implementations (metal mining, turbine disc, spinning disk, mechanical engineering and drawing of plastic film) of nanoliquid flow between rotating disks, we have reported a theoretical analysis on magnetohydrodynamic flow of kerosene base liquid containing three different nanoparticles namely manganese-zinc ferrite, cobalt ferrite and nickel-zinc ferrite between two parallel rotating-disks. Thermal radiation and convection thermal-conditions are considered. Furthermore, the significant properties of induced magnetic field are accounted to control the flow and thermal transport phenomenon. Furthermore, the temperature distribution is improved by employing Cattaneo-Christov heat flux. This communication is critical in the engineering sector due to different implementations including power technology, cooling reactors, fuel cells etc. The system of nonlinear higher order dimensionless equations is found by applying appropriate similarities-transformations. The exact solution of such strong nonlinear equations is not possible therefore we construct the numerical solution by employing bvp4c (shooting approach) in the MATLAB. Physical trends of velocities, pressure and thermal fields are discussed in detail. The outcomes indicate that stretching parameter of lower disk causes improvement in axial and radial fluid velocity. Fluid radial velocity near the lower disk is improved for growing Reynolds number. Moreover, the thermal field is enhanced for growing thermal Biot parameter at lower disk.


2021 ◽  
Author(s):  
Anjali Shrivastava ◽  
Ashwani Kumar Shrivastava

Abstract Co-precipitation technique was adopted to synthesize gadolinium doped manganese-zinc ferrite nano particles with varying concentration 0, 0.1, 0.2 and 0.3. XRD patterns authenticated the ferrite innovate in the as-prepared samples. The lattice parameter, crystallite size, lattice strain and x-ray density has been calculated. The crystallite size is comes bent on be around 5 nm. The FTIR spectra reveal that every one the functional groups are present within the material. SEM images are accustomed to indicate the morphological characteristics of the as-prepared samples. Magnetic properties show the decrease in saturation magnetization from 37.57emu/g to 30.15emu/g with reference to increase in gadolinium doping from 0.1 to 0.3.


2021 ◽  
Author(s):  
Yafei SUN ◽  
Tianshu ZHOU ◽  
Yueyue PENG ◽  
Hongwei LIU

Dual layer cement-based absorber is synthesized by mixing with graphene nanosheets and manganese-zinc ferrite, to study the effect of absorbing filler content on the mechanical properties, microstructure, electrical resistivity and reflectivity of the paste. The microstructure of the absorber is seen by Scanning Electron Microscope (SEM) images, Fourier Transform Infrared (FTIR) spectroscopy, X-Ray Diffraction (XRD) curves of the absorber. The results show that graphene nanosheets significantly reduce the electrical resistivity of paste, increasing its mechanical properties by improving its pore structure. SEM images indicate that graphene nanosheets promote the increase and coarsening of cement hydration products and produce a large number of dense bulk crystals. Furthermore, reflectivity measurements show that the minimum reflectivity of – 14.1 dB is obtained in the range of 2 ~ 18 GHz and the effective bandwidth of 16 GHz is obtained when reflectivity is less than – 7 dB. This study provides a new method for the preparation of dual layer cement-based absorber.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 616
Author(s):  
Ján Kruželák ◽  
Andrea Kvasničáková ◽  
Klaudia Hložeková ◽  
Rastislav Dosoudil ◽  
Marek Gořalík ◽  
...  

In the present work, composite materials were prepared by incorporation of manganese-zinc ferrite, carbon black and combination of ferrite and carbon black into acrylonitrile-butadiene rubber (NBR). For cross-linking of composites, standard sulfur-based curing system was applied. The main goal was to investigate the influence of the fillers on the physical-mechanical properties of composites. Then, the electromagnetic absorption shielding ability was investigated in the frequency range 1 MHz–3 GHz. The results revealed that composites filled with ferrite provide sufficient absorption shielding performance in the tested frequency range. On the other hand, ferrite behaves as an inactive filler and deteriorates the physical-mechanical characteristics of composites. Carbon black reinforces the rubber matrix and contributes to the improvement of physical-mechanical properties. However, composites filled with carbon black are not able to absorb electromagnetic radiation in the given frequency range. Finally, the combination of carbon black and ferrite resulted in the modification of both physical-mechanical characteristics and absorption shielding ability of hybrid composites.


Sign in / Sign up

Export Citation Format

Share Document