scholarly journals An Enhanced Ensemble of Long Short-Term Memory and Vector AutoRegression for Energy Consumption Forecasting

2021 ◽  
Vol 14 (43) ◽  
pp. 3227-3236
Author(s):  
Anagha D Ananth ◽  
◽  
Sujatha Arun Kokatnoor
2022 ◽  
Vol 9 ◽  
Author(s):  
Yingjun Ruan ◽  
Gang Wang ◽  
Hua Meng ◽  
Fanyue Qian

Energy consumption prediction is a popular research field in computational intelligence. However, it is difficult for general machine learning models to handle complex time series data such as building energy consumption data, and the results are often unsatisfactory. To address this difficulty, a hybrid prediction model based on modal decomposition was proposed in this paper. For data preprocessing, the variational mode decomposition (VMD) technique was used to used to decompose the original sequence into more robust subsequences. In the feature selection, the maximum relevance minimum redundancy (mRMR) algorithm was chosen to analyse the correlation between each component and the individual features while eliminating the redundancy between individual features. In the forecasting module, the long short-term memory (LSTM) neural network model was used to predict power consumption. In order to verify the performance of the proposed model, three categories of contrast methods were applied: 1) Comparing the hybrid model to a single predictive model, 2) Comparing the hybrid model with the backpropagation neural network (BPNN) to the hybrid model with the LSTM and 3) Comparing the hybrid model using mRMR and the hybrid model using mutual information maximization (MIM). The experimental results on the measured data of an office building in Qingdao show that the proposed hybrid model can improve the prediction accuracy and has better robustness compared to VMD-MIM-LSTM. In the three control groups mentioned above, the R2 value of the hybrid model improved by 10, 3 and 3%, respectively, the values of the mean absolute error (MAE) decreased by 48.9, 41.4 and 35.6%, respectively, and the root mean square error (RMSE) decreased by 54.7, 35.5 and 34.1%, respectively.


2020 ◽  
Vol 55 ◽  
pp. 102000 ◽  
Author(s):  
Chonggang Zhou ◽  
Zhaosong Fang ◽  
Xiaoning Xu ◽  
Xuelin Zhang ◽  
Yunfei Ding ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3004
Author(s):  
Khadijeh Alibabaei ◽  
Pedro D. Gaspar ◽  
Tânia M. Lima

Deep learning has already been successfully used in the development of decision support systems in various domains. Therefore, there is an incentive to apply it in other important domains such as agriculture. Fertilizers, electricity, chemicals, human labor, and water are the components of total energy consumption in agriculture. Yield estimates are critical for food security, crop management, irrigation scheduling, and estimating labor requirements for harvesting and storage. Therefore, estimating product yield can reduce energy consumption. Two deep learning models, Long Short-Term Memory and Gated Recurrent Units, have been developed for the analysis of time-series data such as agricultural datasets. In this paper, the capabilities of these models and their extensions, called Bidirectional Long Short-Term Memory and Bidirectional Gated Recurrent Units, to predict end-of-season yields are investigated. The models use historical data, including climate data, irrigation scheduling, and soil water content, to estimate end-of-season yield. The application of this technique was tested for tomato and potato yields at a site in Portugal. The Bidirectional Long Short-Term memory outperformed the Gated Recurrent Units network, the Long Short-Term Memory, and the Bidirectional Gated Recurrent Units network on the validation dataset. The model was able to capture the nonlinear relationship between irrigation amount, climate data, and soil water content and predict yield with an MSE of 0.017 to 0.039. The performance of the Bidirectional Long Short-Term Memory in the test was compared with the most commonly used deep learning method, the Convolutional Neural Network, and machine learning methods including a Multi-Layer Perceptrons model and Random Forest Regression. The Bidirectional Long Short-Term Memory outperformed the other models with an R2 score between 0.97 and 0.99. The results show that analyzing agricultural data with the Long Short-Term Memory model improves the performance of the model in terms of accuracy. The Convolutional Neural Network model achieved the second-best performance. Therefore, the deep learning model has a remarkable ability to predict the yield at the end of the season.


2021 ◽  
Vol 11 (15) ◽  
pp. 6722
Author(s):  
Luis Mendoza-Pittí ◽  
Huriviades Calderón-Gómez ◽  
José Manuel Gómez-Pulido ◽  
Miguel Vargas-Lombardo ◽  
José Luis Castillo-Sequera ◽  
...  

Forecasting the energy consumption of heating, ventilating, and air conditioning systems is important for the energy efficiency and sustainability of buildings. In fact, conventional models present limitations in these systems due to their complexity and unpredictability. To overcome this, the long short-term memory-based model is employed in this work. Our objective is to develop and evaluate a model to forecast the daily energy consumption of heating, ventilating, and air conditioning systems in buildings. For this purpose, we apply a comprehensive methodology that allows us to obtain a robust, generalizable, and reliable model by tuning different parameters. The results show that the proposed model achieves a significant improvement in the coefficient of variation of root mean square error of 9.5% compared to that proposed by international agencies. We conclude that these results provide an encouraging outlook for its implementation as an intelligent service for decision making, capable of overcoming the problems of other noise-sensitive models affected by data variations and disturbances without the need for expert knowledge in the domain.


Sign in / Sign up

Export Citation Format

Share Document