scholarly journals A Hybrid Model for Power Consumption Forecasting Using VMD-Based the Long Short-Term Memory Neural Network

2022 ◽  
Vol 9 ◽  
Author(s):  
Yingjun Ruan ◽  
Gang Wang ◽  
Hua Meng ◽  
Fanyue Qian

Energy consumption prediction is a popular research field in computational intelligence. However, it is difficult for general machine learning models to handle complex time series data such as building energy consumption data, and the results are often unsatisfactory. To address this difficulty, a hybrid prediction model based on modal decomposition was proposed in this paper. For data preprocessing, the variational mode decomposition (VMD) technique was used to used to decompose the original sequence into more robust subsequences. In the feature selection, the maximum relevance minimum redundancy (mRMR) algorithm was chosen to analyse the correlation between each component and the individual features while eliminating the redundancy between individual features. In the forecasting module, the long short-term memory (LSTM) neural network model was used to predict power consumption. In order to verify the performance of the proposed model, three categories of contrast methods were applied: 1) Comparing the hybrid model to a single predictive model, 2) Comparing the hybrid model with the backpropagation neural network (BPNN) to the hybrid model with the LSTM and 3) Comparing the hybrid model using mRMR and the hybrid model using mutual information maximization (MIM). The experimental results on the measured data of an office building in Qingdao show that the proposed hybrid model can improve the prediction accuracy and has better robustness compared to VMD-MIM-LSTM. In the three control groups mentioned above, the R2 value of the hybrid model improved by 10, 3 and 3%, respectively, the values of the mean absolute error (MAE) decreased by 48.9, 41.4 and 35.6%, respectively, and the root mean square error (RMSE) decreased by 54.7, 35.5 and 34.1%, respectively.

Author(s):  
Ning He ◽  
Cheng Qian ◽  
Lile He

Abstract As an important energy storage device, lithium-ion batteries have vast applications in daily production and life. Therefore, the remaining useful life prediction of such batteries is of great significance, which can maintain the efficacy and reliability of the system powered by lithium-ion batteries. For predicting remaining useful life of lithium-ion batteries accurately, an adaptive hybrid battery model and an improved particle filter are developed. Firstly, the adaptive hybrid model is constructed, which is a combination of empirical model and long-short term memory neural network model such that it could characterize battery capacity degradation trend more effectively. In addition, the adaptive adjustment of the parameters for hybrid model is realized via optimization technique. Then, the beetle antennae search based particle filter is applied to update the battery states offline constructed by the proposed adaptive hybrid model, which can improve the estimation accuracy. Finally, remaining useful life short-term prediction is realized online based on long short-term memory neural network rolling prediction combined historical capacity with online measurements and latest offline states and model parameters. The battery data set published by NASA is used to verify the effectiveness of proposed strategy. The experimental results indicate that the proposed adaptive hybrid model can well represent the battery degradation characteristics, and have a higher accuracy compared with other models. The short-term remaining useful life prediction results have good performance with the errors of 1 cycle, 3 cycles, and 1 cycle, above results indicate proposed scheme has a good performance on short-term remaining useful life prediction.


Author(s):  
H. Fan ◽  
M. Yang ◽  
F. Xiao ◽  
K. Zhao

Abstract. Over the past few decades, air pollution has caused serious damage on public health, thus making accurate predictions of PM2.5 crucial. Due to the transportation of air pollutants among areas, the PM2.5 concentration is strongly spatiotemporal correlated. However, the distribution of air pollution monitoring sites is not even, making the spatiotemporal correlation between the central site and surrounding sites varies with different density of sites, and this was neglected by most existing methods. To tackle this problem, this study proposed a weighted long short-term memory neural network extended model (WLSTME), which addressed the issue that how to consider the effect of the density of sites and wind condition on the spatiotemporal correlation of air pollution concentration. First, several the nearest surrounding sites were chosen as the neighbour sites to the central station, and their distance as well as their air pollution concentration and wind condition were input to multi-layer perception (MLP) to generate weighted historical PM2.5 time series data. Second, historical PM2.5 concentration of the central site and weighted PM2.5 series data of neighbour sites were input into LSTM to address spatiotemporal dependency simultaneously and extract spatiotemporal features. Finally, another MLP was utilized to integrate spatiotemporal features extracted above with the meteorological data of central site to generate the forecasts future PM_2.5 concentration of the central site. Daily PM_2.5 concentration and meteorological data on Beijing–Tianjin–Hebei from 2015 to 2017 were collected to train models and evaluate the performance. Experimental results with 3 other methods showed that the proposed WLSTME model has the lowest RMSE (40.67) and MAE (26.10) and the highest p (0.59). This finding confirms that WLSTME can significantly improve the PM2.5 prediction accuracy.


2018 ◽  
Vol 7 (4.15) ◽  
pp. 25 ◽  
Author(s):  
Said Jadid Abdulkadir ◽  
Hitham Alhussian ◽  
Muhammad Nazmi ◽  
Asim A Elsheikh

Forecasting time-series data are imperative especially when planning is required through modelling using uncertain knowledge of future events. Recurrent neural network models have been applied in the industry and outperform standard artificial neural networks in forecasting, but fail in long term time-series forecasting due to the vanishing gradient problem. This study offers a robust solution that can be implemented for long-term forecasting using a special architecture of recurrent neural network known as Long Short Term Memory (LSTM) model to overcome the vanishing gradient problem. LSTM is specially designed to avoid the long-term dependency problem as their default behavior. Empirical analysis is performed using quantitative forecasting metrics and comparative model performance on the forecasted outputs. An evaluation analysis is performed to validate that the LSTM model provides better forecasted outputs on Standard & Poor’s 500 Index (S&P 500) in terms of error metrics as compared to other forecasting models.  


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 668 ◽  
Author(s):  
S. Poornima ◽  
M. Pushpalatha

Prediction of rainfall is one of the major concerns in the domain of meteorology. Several techniques have been formerly proposed to predict rainfall based on statistical analysis, machine learning and deep learning techniques. Prediction of time series data in meteorology can assist in decision-making processes carried out by organizations responsible for the prevention of disasters. This paper presents Intensified Long Short-Term Memory (Intensified LSTM) based Recurrent Neural Network (RNN) to predict rainfall. The neural network is trained and tested using a standard dataset of rainfall. The trained network will produce predicted attribute of rainfall. The parameters considered for the evaluation of the performance and the efficiency of the proposed rainfall prediction model are Root Mean Square Error (RMSE), accuracy, number of epochs, loss, and learning rate of the network. The results obtained are compared with Holt–Winters, Extreme Learning Machine (ELM), Autoregressive Integrated Moving Average (ARIMA), Recurrent Neural Network and Long Short-Term Memory models in order to exemplify the improvement in the ability to predict rainfall.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3004
Author(s):  
Khadijeh Alibabaei ◽  
Pedro D. Gaspar ◽  
Tânia M. Lima

Deep learning has already been successfully used in the development of decision support systems in various domains. Therefore, there is an incentive to apply it in other important domains such as agriculture. Fertilizers, electricity, chemicals, human labor, and water are the components of total energy consumption in agriculture. Yield estimates are critical for food security, crop management, irrigation scheduling, and estimating labor requirements for harvesting and storage. Therefore, estimating product yield can reduce energy consumption. Two deep learning models, Long Short-Term Memory and Gated Recurrent Units, have been developed for the analysis of time-series data such as agricultural datasets. In this paper, the capabilities of these models and their extensions, called Bidirectional Long Short-Term Memory and Bidirectional Gated Recurrent Units, to predict end-of-season yields are investigated. The models use historical data, including climate data, irrigation scheduling, and soil water content, to estimate end-of-season yield. The application of this technique was tested for tomato and potato yields at a site in Portugal. The Bidirectional Long Short-Term memory outperformed the Gated Recurrent Units network, the Long Short-Term Memory, and the Bidirectional Gated Recurrent Units network on the validation dataset. The model was able to capture the nonlinear relationship between irrigation amount, climate data, and soil water content and predict yield with an MSE of 0.017 to 0.039. The performance of the Bidirectional Long Short-Term Memory in the test was compared with the most commonly used deep learning method, the Convolutional Neural Network, and machine learning methods including a Multi-Layer Perceptrons model and Random Forest Regression. The Bidirectional Long Short-Term Memory outperformed the other models with an R2 score between 0.97 and 0.99. The results show that analyzing agricultural data with the Long Short-Term Memory model improves the performance of the model in terms of accuracy. The Convolutional Neural Network model achieved the second-best performance. Therefore, the deep learning model has a remarkable ability to predict the yield at the end of the season.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 774
Author(s):  
Tingliang Liu ◽  
Jing Yan ◽  
Yanxin Wang ◽  
Yifan Xu ◽  
Yiming Zhao

Distinguishing the types of partial discharge (PD) caused by different insulation defects in gas-insulated switchgear (GIS) is a great challenge in the power industry, and improving the recognition accuracy of the relevant models is one of the key problems. In this paper, a convolutional neural network and long short-term memory (CNN-LSTM) model is proposed, which can effectively extract and utilize the spatiotemporal characteristics of PD input signals. First, the spatial characteristics of higher-level PD signals can be obtained through the CNN network, but because CNN is a deep feedforward neural network, it does not have the ability to process time-series data. The PD voltage signal is related to the time dimension, so LSTM saves and analyzes the previous voltage signal information, realizes the modeling of the time dependence of the data, and improves the accuracy of the PD signal pattern recognition. Finally, the pattern recognition results based on CNN-LSTM are given and compared with those based on other traditional analysis methods. The results show that the pattern recognition rate of this method is the highest, with an average of 97.9%, and its overall accuracy is better than that of other traditional analysis methods. The CNN-LSTM model provides a reliable reference for GIS PD diagnosis.


Sign in / Sign up

Export Citation Format

Share Document