FindingNemo: A Toolkit of CoHex- and Glass Bead-based Protocols for Ultra-Long Sequencing on ONT Platforms v1

Author(s):  
Inswasti Cahyani ◽  
John Tyson ◽  
Nadine Holmes ◽  
Josh Quick ◽  
Nicholas Loman ◽  
...  

This collection of protocols is designed to enable ultra-long (UL) reads on Nanopore sequencers. It is split into five sections dealing with ultra-high molecular weight (UHMW) DNA: Extraction QC Library preparation Nemo clean-up using glass beads and Hexamminecobalt(III) Chloride, aka. CoHex. Flowcell priming and library loading We have tested and optimised the full protocol in human cell lines. Various options are available for each of the steps and we hope that the components here will be useful to the community and provide a long read toolkit.

2021 ◽  
Author(s):  
Inswasti Cahyani ◽  
John Tyson ◽  
Nadine Holmes ◽  
Josh Quick ◽  
Nicholas Loman ◽  
...  

This protocol is focussed on the isolation of ultra-high molecular weight (UHMW) DNA, library preparation and clean up ready for sequencing on the Oxford Nanopore Technology (ONT) platforms, all within one working day. This protocol is optimised for human cell lines. Summary of the workflow:


protocols.io ◽  
2020 ◽  
Author(s):  
Ashley Jones ◽  
Cynthia Torkel ◽  
David Stanley ◽  
Jamila Nasim ◽  
Justin Borevitz ◽  
...  

2020 ◽  
Author(s):  
Anna Cusco ◽  
Daniel Perez ◽  
Joaquim Viñes ◽  
Olga Francino

Abstract Background. Metagenomics is a powerful and rapidly developing approach that provides new biological insights into the microbes inhabiting underexplored environments, such as canine fecal microbiome. We investigate long-read metagenomics with Nanopore sequencing to profile the fecal microbiome and to retrieve high-quality metagenome-assembled genomes (HQ MAGs) from a healthy dog.Results. More than 99% of total classified reads corresponded to Bacteria. The most abundant phylum was Bacteroidetes (~80% of total reads), followed by Firmicutes, Proteobacteria, and Fusobacteria. Prevotella (>50%) and Bacteroides (>20%) are the more abundant genera, followed by Fusobacterium, Megamonas, Sutterella, and other fecal-related genera, (each representing <5% of the total bacterial composition). We retrieved eight single-contig HQ MAGs and three medium-quality MAGs, after combining several metagenome dataset assemblies. The HQ MAGs corresponded to Succinivibrio, Sutterella, Prevotellamassilia, Phascolarctobacterium, Enterococcus, Blautia, and Catenibacterium genera. Succinivibrio HQ MAG represents a novel candidate bacterial species. Sutterella HQ MAG is potentially the first reported genome assembly for Sutterella stercoricanis, as assigned by 16S rRNA gene similarity. Prevotellamassilia, Phascolarctobacterium, Catenibacterium, and Blautia sp900541345 HQ MAGs improved the contiguity of previously reported genome assemblies in their respective genera, and the number of rRNA genes and tRNA genes. Finally, Enterococcus hirae and Blautia sp003287895 HQ MAGs represented species that already have a complete reference genome. At the technical level, we demonstrated that a high-molecular weight DNA extraction improved the taxonomic classification of the raw unassembled reads, the metagenomics assembly contiguity, and the retrieval of longer and circular contigs, which are potential HQ MAGs. Conclusions. Long-read metagenomics allowed us to recover HQ MAGs from canine feces of a healthy dog. The high-molecular weight DNA extraction to improve contiguity and the correction of the insertions and deletions to reduce frameshift errors ensure the retrieval of complete single-contig HQ MAGs.


2021 ◽  
Author(s):  
Hollis A Dahn ◽  
Jacquelyn Mountcastle ◽  
Jennifer Balacco ◽  
Sylke Winkler ◽  
Iliana Bista ◽  
...  

Studies in vertebrate genomics require sampling from a broad range of tissue types, taxa, and localities. Recent advancements in long-read and long-range genome sequencing have made it possible to produce high-quality chromosome-level genome assemblies for almost any organism. However, adequate tissue preservation for the requisite ultra-high molecular weight DNA (uHMW DNA) remains a major challenge. Here we present a comparative study of preservation methods for field and laboratory tissue sampling, across vertebrate classes and different tissue types. We find that no single method is best for all cases. Instead, the optimal storage and extraction methods vary by taxa, by tissue, and by down-stream application. Therefore, we provide sample preservation guidelines that ensure sufficient DNA integrity and amount required for use with long-read and long-range sequencing technologies across vertebrates. Our best practices generated the uHMW DNA needed for the high-quality reference genomes for Phase 1 of the Vertebrate Genomes Project (VGP), whose ultimate mission is to generate chromosome-level reference genome assemblies of all ~70,000 extant vertebrate species.


2021 ◽  
Author(s):  
Inswasti Cahyani ◽  
John Tyson ◽  
Nadine Holmes ◽  
Josh Quick ◽  
Nicholas Loman ◽  
...  

This is a sub-protocol designed to extract/isolate ultra-high molecular weight (UHMW) DNA to obtain ultra-long (UL) reads on Nanopore sequencers using a phenol-free extraction method. A DNA extraction protocol that yields clean and homogeneous UHMW DNA is important for a good UL sequencing output. The choice of protocol should be based on achieving these parameters. Kit-free, phenol-free protocol is a modification of NEB's Monarch HMW DNA Extraction Kit for Cells & Blood, with the option to use SDS or CTAB in the lysis buffer. This protocol also uses glass beads for DNA precipitation matrix. We tested this sub-protocol in human cell line, with input cells of 3 millions but can be varied from 1-5 millions. As a rule of thumb, a million cells will suffice for one load on a MinION.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253830
Author(s):  
Ashley Jones ◽  
Cynthia Torkel ◽  
David Stanley ◽  
Jamila Nasim ◽  
Justin Borevitz ◽  
...  

Rapid advancements in long-read sequencing technologies have transformed read lengths from bps to Mbps, which has enabled chromosome-scale genome assemblies. However, read lengths are now becoming limited by the extraction of pure high-molecular weight DNA suitable for long-read sequencing, which is particularly challenging in plants and fungi. To overcome this, we present a protocol collection; high-molecular weight DNA extraction, clean-up and size selection for long-read sequencing. We optimised a gentle magnetic bead based high-molecular weight DNA extraction, which is presented here in detail. The protocol circumvents spin columns and high-centrifugation, to limit DNA fragmentation. The protocol is scalable based on tissue input, which can be used on many species of plants, fungi, reptiles and bacteria. It is also cost effective compared to kit-based protocols and hence applicable at scale in low resource settings. An optional sorbitol wash is listed and is highly recommended for plant and fungal tissues. To further remove any remaining contaminants such as phenols and polysaccharides, optional DNA clean-up and size selection strategies are given. This protocol collection is suitable for all common long-read sequencing platforms, such as technologies offered by PacBio and Oxford Nanopore. Using these protocols, sequencing on the Oxford Nanopore MinION can achieve read length N50 values of 30–50 kb, with reads exceeding 200 kb and outputs ranging from 15–30 Gbp. This has been routinely achieved with various plant, fungi, animal and bacteria samples.


Sign in / Sign up

Export Citation Format

Share Document