tRNA Knock-Down in Mammalian Cells using Short Hairpin RNAs v1 (protocols.io.hgfb3tn)

protocols.io ◽  
2017 ◽  
Author(s):  
Sebastian Kirchner ◽  
Robert Rauscher ◽  
Andreas Czech ◽  
Zoya Ignatova
2022 ◽  
Author(s):  
N Govardhana Sagar ◽  
A Rajendra Prasad ◽  
Pushpendra Kumar ◽  
Bharat Bhushan ◽  
P Guru Vishnu ◽  
...  

Abstract RNA interference by short hairpin RNAs (shRNAs) is a widely used post transcriptional silencing mechanism for suppressing expression of the target gene. In the current study, five shRNA molecules each against SCD and SREBP1 genes involved in denovo lipid biosynthesis were designed upon considering parameters such as secondary structures of shRNAs, mRNA target regions, GC content and thermodynamic properties (ΔG overall, ΔG duplex and ΔG break-target), synthesized and cloned in pENTR/U6 entry vector to knockdown the expression of SCD and SREBP1 genes. After transfection of these shRNA constructs into the chicken embryonic hepatocytes, expressions of the target genes were monitored by real time PCR. Significant reduction (P<0.05) in the expression of SCD and SREBP1 genes was observed in hepatocytes. The shRNAs against SCD gene showed the knock down efficiency ranged from 20.4% (shRNA5) to 74.2% (shRNA2). In case of SREBP1 gene, the shRNAs showed knock-down efficiency ranging from 26.8% (shRNA4) to 95.85% (shRNA1). The shRNAs against both the genes introduced in chicken hepatocyte cells did not show any significant impact on expression of immune response genes (IFNA and IFNB) in those cells. These results clearly demonstrated the successful down regulation of the expression of SCD and SREBP1 genes by the shRNA molecules against both the target genes under in vitro condition. It is concluded that the shRNA molecules against SCD and SREBP1 genes showed great potential to silence the expression of these genes under in vitro chicken embryonic hepatocyte cells.


2004 ◽  
Vol 1 (2) ◽  
pp. 163-167 ◽  
Author(s):  
Patrick J Paddison ◽  
Michele Cleary ◽  
Jose Maria Silva ◽  
Kenneth Chang ◽  
Nihar Sheth ◽  
...  

2006 ◽  
Vol 9 (5) ◽  
pp. 0-0 ◽  
Author(s):  
Veronique Stove ◽  
Kaatje Smits ◽  
Evelien Naessens ◽  
Jean Plum ◽  
Bruno Verhasselt

2006 ◽  
Vol 11 (3) ◽  
pp. 236-246 ◽  
Author(s):  
Laurence H. Lamarcq ◽  
Bradley J. Scherer ◽  
Michael L. Phelan ◽  
Nikolai N. Kalnine ◽  
Yen H. Nguyen ◽  
...  

A method for high-throughput cloning and analysis of short hairpin RNAs (shRNAs) is described. Using this approach, 464 shRNAs against 116 different genes were screened for knockdown efficacy, enabling rapid identification of effective shRNAs against 74 genes. Statistical analysis of the effects of various criteria on the activity of the shRNAs confirmed that some of the rules thought to govern small interfering RNA (siRNA) activity also apply to shRNAs. These include moderate GC content, absence of internal hairpins, and asymmetric thermal stability. However, the authors did not find strong support for positionspecific rules. In addition, analysis of the data suggests that not all genes are equally susceptible to RNAinterference (RNAi).


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yang Zhang ◽  
Tuan M. Nguyen ◽  
Xiao-Ou Zhang ◽  
Limei Wang ◽  
Tin Phan ◽  
...  

AbstractShort hairpin RNAs (shRNAs) are used to deplete circRNAs by targeting back-splicing junction (BSJ) sites. However, frequent discrepancies exist between shRNA-mediated circRNA knockdown and the corresponding biological effect, querying their robustness. By leveraging CRISPR/Cas13d tool and optimizing the strategy for designing single-guide RNAs against circRNA BSJ sites, we markedly enhance specificity of circRNA silencing. This specificity is validated in parallel screenings by shRNA and CRISPR/Cas13d libraries. Using a CRISPR/Cas13d screening library targeting > 2500 human hepatocellular carcinoma-related circRNAs, we subsequently identify a subset of sorafenib-resistant circRNAs. Thus, CRISPR/Cas13d represents an effective approach for high-throughput study of functional circRNAs.


Blood ◽  
2006 ◽  
Vol 108 (10) ◽  
pp. 3305-3312 ◽  
Author(s):  
T. Yamamoto ◽  
H. Miyoshi ◽  
N. Yamamoto ◽  
N. Yamamoto ◽  
J.-i. Inoue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document