simultaneous expression
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 16)

H-INDEX

38
(FIVE YEARS 2)

2021 ◽  
Vol 17 (12) ◽  
pp. e1009600
Author(s):  
Weikang Chen ◽  
Yao Ding ◽  
Dawei Liu ◽  
Zhengzhou Lu ◽  
Yan Wang ◽  
...  

Kaposi sarcoma (KS) is an angioproliferative and invasive tumor caused by Kaposi sarcoma-associated herpesvirus (KSHV). The cellular origin of KS tumor cells remains contentious. Recently, evidence has accrued indicating that KS may arise from KSHV-infected mesenchymal stem cells (MSCs) through mesenchymal-to-endothelial transition (MEndT), but the transformation process has been largely unknown. In this study, we investigated the KSHV-mediated MEndT process and found that KSHV infection rendered MSCs incomplete endothelial lineage differentiation and formed hybrid mesenchymal/endothelial (M/E) state cells characterized by simultaneous expression of mesenchymal markers Nestin/PDGFRA/α-SAM and endothelial markers CD31/PDPN/VEGFR2. The hybrid M/E cells have acquired tumorigenic phenotypes in vitro and the potential to form KS-like lesions after being transplanted in mice under renal capsules. These results suggest a homology of KSHV-infected MSCs with Kaposi sarcoma where proliferating KS spindle-shaped cells and the cells that line KS-specific aberrant vessels were also found to exhibit the hybrid M/E state. Furthermore, the genetic analysis identified KSHV-encoded FLICE inhibitory protein (vFLIP) as a crucial regulator controlling KSHV-induced MEndT and generating hybrid M/E state cells for tumorigenesis. Overall, KSHV-mediated MEndT that transforms MSCs to tumorigenic hybrid M/E state cells driven by vFLIP is an essential event in Kaposi sarcomagenesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruchi Kumari ◽  
Holger Hummerich ◽  
Xu Shen ◽  
Martin Fischer ◽  
Larisa Litovchick ◽  
...  

AbstractCellular senescence is a stable cell cycle arrest that normal cells undergo after a finite number of divisions, in response to a variety of intrinsic and extrinsic stimuli. Although senescence is largely established and maintained by the p53/p21WAF1/CIP1 and pRB/p16INK4A tumour suppressor pathways, the downstream targets responsible for the stability of the growth arrest are not known. We have employed a stable senescence bypass assay in conditionally immortalised human breast fibroblasts (CL3EcoR) to investigate the role of the DREAM complex and its associated components in senescence. DREAM is a multi-subunit complex comprised of the MuvB core, containing LIN9, LIN37, LIN52, LIN54, and RBBP4, that when bound to p130, an RB1 like protein, and E2F4 inhibits cell cycle-dependent gene expression thereby arresting cell division. Phosphorylation of LIN52 at Serine 28 is required for DREAM assembly. Re-entry into the cell cycle upon phosphorylation of p130 leads to disruption of the DREAM complex and the MuvB core, associating initially to B-MYB and later to FOXM1 to form MMB and MMB-FOXM1 complexes respectively. Here we report that simultaneous expression of MMB-FOXM1 complex components efficiently bypasses senescence with LIN52, B-MYB, and FOXM1 as the crucial components. Moreover, bypass of senescence requires non-phosphorylated LIN52 that disrupts the DREAM complex, thereby indicating a central role for assembly of the DREAM complex in senescence.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Argelia Calvillo-Robledo ◽  
Enrique Pedernera ◽  
Flavia Morales-Vásquez ◽  
Delia Pérez-Montiel ◽  
María J. Gómora ◽  
...  

Abstract Background Ovarian cancer is usually diagnosed at an advanced stage due to its early asymptomatic course and late-stage non-specific symptoms. This highlights the importance of researching the molecular mechanisms involved in ovarian carcinogenesis as well as the discovery of novel prognostic markers that could help improve the survival outcome of patients. The aim of this study was to evaluate the expression of the steroid sulfatase (STS) in 154 samples of primary ovarian tumors. This protein is crucial in the intracellular conversion of sulfated steroid hormones to active steroid hormones. The presence of STS, 3β-HSD, and 17β-HSD1 result in the production of testosterone which act through the androgen receptor (AR) in the tumor cell. The presence of STS and AR in epithelial ovarian tumors and their association to the overall survival of patients was evaluated using Kaplan–Meier and Cox regression analyses. Results Immunoreactivity for STS was detected in 65% of the tumors and no association was observed with histological subtypes and clinical stages of the tumor. The STS expression in the tumors exhibiting immunoreactive AR resulted in a reduced survival (log-rank test, p = 0.032) and a risk factor in univariate and multivariate analysis, HR = 3.46, CI95% 1.00–11.92, p = 0.049 and HR = 5.92, CI95% 1.34–26.09, p = 0.019, respectively. Conclusions These findings suggest that the intracellular synthesis of testosterone acting through its receptor can promote tumor growth and progression. Moreover, the simultaneous expression of STS and AR constitutes an independent predictor of poor prognosis in epithelial ovarian tumors.


2021 ◽  
Author(s):  
Suhong Sun ◽  
Shuting Li ◽  
Zhengnan Luo ◽  
Minhui Ren ◽  
Shunji He ◽  
...  

ABSTRACTMammalian cochlear outer hair cells (OHCs) are essential for hearing. OHC degeneration causes severe hearing impairment. Previous attempts of regenerating new OHCs from cochlear supporting cells (SCs) had yielded cells lacking Prestin, a key motor protein for OHC function. Thus, regeneration of Prestin+ OHCs remains a challenge for repairing OHC damage in vivo. Here, we reported that successful in vivo conversion of adult cochlear SCs into Prestin+ OHC-like cells could be achieved by simultaneous expression of Atoh1 and Ikzf2, two key transcriptional factors necessary for OHC development. New OHC-like cells exhibited upregulation of hundreds of OHC genes and downregulation of SC genes. Single cell transcriptomic analysis demonstrated that the differentiation status of these OHC-like cells was much more advanced than previously achieved. Thus, we have established an efficient approach to promote regeneration of Prestin+ OHCs and paved the way for repairing damaged cochlea in vivo via transdifferentiation of SCs.


Author(s):  
Julia Schnoell ◽  
Bernhard J. Jank ◽  
Lorenz Kadletz-Wanke ◽  
Stefan Stoiber ◽  
Clemens P. Spielvogel ◽  
...  

Abstract Purpose The transcription factors YY1 and CP2 have been associated with tumor promotion and suppression in various cancers. Recently, simultaneous expression of both markers was correlated with negative prognosis in cancer. The aim of this study was to explore the expression of YY1 and CP2 in head and neck squamous cell carcinoma (HNSCC) patients and their association with survival. Methods First, we analyzed mRNA expression and copy number variations (CNVs) of YY1 and CP2 using “The Cancer Genome Atlas” (TCGA) with 510 HNSCC patients. Secondly, protein expression was investigated via immunohistochemistry in 102 patients, who were treated in the Vienna General Hospital, utilizing a tissue microarray. Results The median follow-up was 2.9 years (1.8–4.6) for the TCGA cohort and 10.3 years (6.5–12.8) for the inhouse tissue micro-array (TMA) cohort. The median overall survival of the TCGA cohort was decreased for patients with a high YY1 mRNA expression (4.0 vs. 5.7 years, p = 0.030, corr. p = 0.180) and high YY1-CNV (3.53 vs. 5.4 years, p = 0.0355, corr. p = 0.213). Furthermore, patients with a combined high expression of YY1 and CP2 mRNA showed a worse survival (3.5 vs. 5.4 years, p = 0.003, corr. p = 0.018). The mortality rate of patients with co-expression of YY1 and CP2 mRNA was twice as high compared to patients with low expression of one or both (HR 1.99, 95% CI 1.11–3.58, p = 0.021). Protein expression of nuclear YY1 and CP2 showed no association with disease outcome in our inhouse cohort. Conclusion Our data indicate that simultaneous expression of YY1 and CP2 mRNA is associated with shorter overall survival. Thus, combined high mRNA expression might be a suitable prognostic marker for risk stratification in HNSCC patients. However, since we could not validate this finding at genomic or protein level, we hypothesize that unknown underlying mechanisms which regulate mRNA transcription of YY1 and CP2 are the actual culprits leading to a worse survival.


2020 ◽  
Vol 477 (22) ◽  
pp. 4425-4441
Author(s):  
Peter M. Fernandes ◽  
James Kinkead ◽  
Iain McNae ◽  
Paul A.M. Michels ◽  
Malcolm D. Walkinshaw

6-Phosphofructokinase-1-kinase (PFK) tetramers catalyse the phosphorylation of fructose 6-phosphate (F6P) to fructose 1,6-bisphosphate (F16BP). Vertebrates have three PFK isoforms (PFK-M, PFK-L, and PFK-P). This study is the first to compare the kinetics, structures, and transcript levels of recombinant human PFK isoforms. Under the conditions tested PFK-M has the highest affinities for F6P and ATP (K0.5ATP 152 µM; K0.5F6P 147 µM), PFK-P the lowest affinities (K0.5ATP 276 µM; K0.5F6P 1333 µM), and PFK-L demonstrates a mixed picture of high ATP affinity and low F6P affinity (K0.5ATP 160 µM; K0.5F6P 1360 µM). PFK-M is more resistant to ATP inhibition compared with PFK-L and PFK-P (respectively, 23%, 31%, 50% decreases in specificity constants). GTP is an alternate phospho donor. Interface 2, which regulates the inactive dimer to active tetramer equilibrium, differs between isoforms, resulting in varying tetrameric stability. Under the conditions tested PFK-M is less sensitive to fructose 2,6-bisphosphate (F26BP) allosteric modulation than PFK-L or PFK-P (allosteric constants [K0.5ATP+F26BP/K0.5ATP] 1.10, 0.92, 0.54, respectively). Structural analysis of two allosteric sites reveals one may be specialised for AMP/ADP and the other for smaller/flexible regulators (citrate or phosphoenolpyruvate). Correlations between PFK-L and PFK-P transcript levels indicate that simultaneous expression may expand metabolic capacity for F16BP production whilst preserving regulatory capabilities. Analysis of cancer samples reveals intriguing parallels between PFK-P and PKM2 (pyruvate kinase M2), and simultaneous increases in PFK-P and PFKFB3 (responsible for F26BP production) transcript levels, suggesting prioritisation of metabolic flexibility in cancers. Our results describe the kinetic and transcript level differences between the three PFK isoforms, explaining how each isoform may be optimised for distinct roles.


2020 ◽  
Vol 6 (20) ◽  
pp. eaaz3559 ◽  
Author(s):  
Willem van de Veen ◽  
Anna Globinska ◽  
Kirstin Jansen ◽  
Alex Straumann ◽  
Terufumi Kubo ◽  
...  

B cells contribute to immune responses through the production of immunoglobulins, antigen presentation, and cytokine production. Several B cell subsets with distinct functions and polarized cytokine profiles have been reported. In this study, we used transcriptomics analysis of immortalized B cell clones to identify an IgG4+ B cell subset with a unique function. These B cells are characterized by simultaneous expression of proangiogenic cytokines including VEGF, CYR61, ADM, FGF2, PDGFA, and MDK. Consequently, supernatants from these clones efficiently promote endothelial cell tube formation. We identified CD49b and CD73 as surface markers identifying proangiogenic B cells. Circulating CD49b+CD73+ B cells showed significantly increased frequency in patients with melanoma and eosinophilic esophagitis (EoE), two diseases associated with angiogenesis. In addition, tissue-infiltrating IgG4+CD49b+CD73+ B cells expressing proangiogenic cytokines were detected in patients with EoE and melanoma. Our results demonstrate a previously unidentified proangiogenic B cell subset characterized by expression of CD49b, CD73, and proangiogenic cytokines.


Sign in / Sign up

Export Citation Format

Share Document