scholarly journals Colonic epithelial cell isolation for Single Cell RNA-sequencing v1 (protocols.io.ztrf6m6)

protocols.io ◽  
2019 ◽  
Author(s):  
David Fawkner
2019 ◽  
Vol 30 (8) ◽  
pp. 1358-1364 ◽  
Author(s):  
Lihe Chen ◽  
Jevin Z. Clark ◽  
Jonathan W. Nelson ◽  
Brigitte Kaissling ◽  
David H. Ellison ◽  
...  

2021 ◽  
Author(s):  
Josephine Bageritz ◽  
Niklas Krausse ◽  
Schayan Yousefian ◽  
Svenja Leible ◽  
Erica Valentini ◽  
...  

Single cell RNA sequencing (scRNA-seq) has become an important method to identify cell types, delineate the trajectories of cell differentiation in whole organisms and understand the heterogeneity in cellular responses. Nevertheless, sample collection and processing remain a severe bottleneck for scRNA-seq experiments. Cell isolation protocols often lead to significant changes in the transcriptomes of cells, requiring novel methods to preserve cell states. Here, we developed and benchmarked protocols using glyoxal as a fixative for scRNA-seq application. Using Drop-seq methodology, we detected high numbers of transcripts and genes from glyoxal-fixed Drosophila cells after scRNA-seq. The effective glyoxal fixation of transcriptomes in Drosophila and human cells was further supported by a high correlation of gene expression data between glyoxal-fixed and unfixed samples. Accordingly, we also found highly expressed genes overlapping to a large extent between experimental conditions. These results indicated that our fixation protocol did not induce considerable changes in gene expression and conserved the transcriptome for subsequent single cell isolation procedures. In conclusion, we present glyoxal as a suitable fixative for Drosophila cells and potentially cells of other species that allows high-quality scRNA-seq applications.


2019 ◽  
Author(s):  
Arun C. Habermann ◽  
Austin J. Gutierrez ◽  
Linh T. Bui ◽  
Stephanie L. Yahn ◽  
Nichelle I. Winters ◽  
...  

AbstractPulmonary fibrosis is a form of chronic lung disease characterized by pathologic epithelial remodeling and accumulation of extracellular matrix. In order to comprehensively define the cell types, mechanisms and mediators driving fibrotic remodeling in lungs with pulmonary fibrosis, we performed single-cell RNA-sequencing of single-cell suspensions from 10 non-fibrotic control and 20 PF lungs. Analysis of 114,396 cells identified 31 distinct cell types. We report a remarkable shift in epithelial cell phenotypes occurs in the peripheral lung in PF, and identify several previously unrecognized epithelial cell phenotypes including a KRT5−/KRT17+, pathologic ECM-producing epithelial cell population that was highly enriched in PF lungs. Multiple fibroblast subtypes were observed to contribute to ECM expansion in a spatially-discrete manner. Together these data provide high-resolution insights into the complexity and plasticity of the distal lung epithelium in human disease, and indicate a diversity of epithelial and mesenchymal cells contribute to pathologic lung fibrosis.One Sentence SummarySingle-cell RNA-sequencing provides new insights into pathologic epithelial and mesenchymal remodeling in the human lung.


2021 ◽  
Author(s):  
Adela Ben-Yakar ◽  
Peisen Zhao ◽  
Chris Martin ◽  
Ke-Yue Ma ◽  
Ning Jiang

Abstract Our understanding of nerve regeneration can be enhanced by delineating its underlying molecular activities at single neuron resolution in small model organisms such as Caenorhabditis elegans. Existing cell isolation techniques cannot isolate regenerating neurons from the nematode. We present femtosecond laser microdissection (fs-LM), a new single cell isolation method that dissects intact cells directly from living tissue by leveraging the micron-scale precision of fs-laser ablation. We show that fs-LM facilitated sensitive and specific gene expression profiling by single cell RNA-sequencing, while mitigating the stress related transcriptional artifacts induced by tissue dissociation. Single cell RNA-sequencing of fs-LM isolated regenerating C. elegans neurons revealed transcriptional program leading to successful regeneration in wild-type animals or regeneration failure in animals lacking DLK-1/p38 kinase. The ability of fs-LM to isolate specific neurons based on phenotype of interest allowed us to study the molecular basis of regeneration heterogeneity displayed by neurons of the same type. We identified gene modules whose expression patterns were correlated with axon regrowth rate at a single neuron level. Our results establish fs-LM as a highly specific single cell isolation method ideal for precision and phenotype-driven studies.


2020 ◽  
Vol 6 (28) ◽  
pp. eaba1972 ◽  
Author(s):  
Arun C. Habermann ◽  
Austin J. Gutierrez ◽  
Linh T. Bui ◽  
Stephanie L. Yahn ◽  
Nichelle I. Winters ◽  
...  

Pulmonary fibrosis (PF) is a form of chronic lung disease characterized by pathologic epithelial remodeling and accumulation of extracellular matrix (ECM). To comprehensively define the cell types, mechanisms, and mediators driving fibrotic remodeling in lungs with PF, we performed single-cell RNA sequencing of single-cell suspensions from 10 nonfibrotic control and 20 PF lungs. Analysis of 114,396 cells identified 31 distinct cell subsets/states. We report that a remarkable shift in epithelial cell phenotypes occurs in the peripheral lung in PF and identify several previously unrecognized epithelial cell phenotypes, including a KRT5−/KRT17+ pathologic, ECM-producing epithelial cell population that was highly enriched in PF lungs. Multiple fibroblast subtypes were observed to contribute to ECM expansion in a spatially discrete manner. Together, these data provide high-resolution insights into the complexity and plasticity of the distal lung epithelium in human disease and indicate a diversity of epithelial and mesenchymal cells contribute to pathologic lung fibrosis.


2021 ◽  
Author(s):  
Peisen Zhao ◽  
Chris Martin ◽  
Ke-Yue Ma ◽  
Ning Jiang ◽  
Adela Ben-Yakar

AbstractOur understanding of nerve regeneration can be enhanced by delineating its underlying molecular activities at single neuron resolution in small model organisms such as Caenorhabditis elegans. Existing cell isolation techniques cannot isolate regenerating neurons from the nematode. We present femtosecond laser microdissection (fs-LM), a new single cell isolation method that dissects intact cells directly from living tissue by leveraging the micron-scale precision of fs-laser ablation. We show that fs-LM facilitated sensitive and specific gene expression profiling by single cell RNA-sequencing, while mitigating the stress related transcriptional artifacts induced by tissue dissociation. Single cell RNA-sequencing of fs-LM isolated regenerating C. elegans neurons revealed transcriptional program leading to successful regeneration in wild-type animals or regeneration failure in animals lacking DLK-1/p38 kinase. The ability of fs-LM to isolate specific neurons based on phenotype of interest allowed us to study the molecular basis of regeneration heterogeneity displayed by neurons of the same type. We identified gene modules whose expression patterns were correlated with axon regrowth rate at a single neuron level. Our results establish fs-LM as a highly specific single cell isolation method ideal for precision and phenotype-driven studies.


Sign in / Sign up

Export Citation Format

Share Document