Investigation of Heavy Metals from Honeybee Drone Pupa (Apis mellifera L) as an Ingredient for Novel Foods

2019 ◽  
Vol 34 (3) ◽  
pp. 273-277
Author(s):  
Hong-Min Choi ◽  
Sang-Mi Han ◽  
Hyo-Young Kim ◽  
Soon-Ok Woo ◽  
Se-Gun Kim ◽  
...  
2021 ◽  
Vol 13 (14) ◽  
pp. 7652
Author(s):  
Giuseppe Cavallo ◽  
Chiara Lorini ◽  
Giuseppe Garamella ◽  
Guglielmo Bonaccorsi

Moderate or severe food insecurity affect 2 billion people worldwide. The four pillars of food security (availability, access, use and stability) are in danger due to the impact of climatic and anthropogenic factors which impact on the food system. Novel foods, like seaweeds, have the potential to increase food yields so that to contribute in preventing or avoiding future global food shortages. The purpose of this systematic review was to assess microbiological, chemical, physical, and allergenic risks associated with seaweed consumption. Four research strings have been used to search for these risks. Preferred Reporting Item for Systematic Reviews and Meta-analysis (PRISMA) guidelines were applied. Finally, 39 articles met the selected criteria. No significant hazards for microbiological, allergenic, and physical risks were detected. Regarding chemical risk, algae can accumulate various heavy metals, especially when harvested in polluted sites. Cultivating seaweeds in a controlled environment allows to avoid this risk. Periodic checks will be necessary on the finished products to monitor heavy metals levels. Since the consumption of algae seems to be on the rise everywhere, it seems to be urgent that food control authorities establish the safety levels to which eating algae does not represent any risk for human health.


Apidologie ◽  
1990 ◽  
Vol 21 (3) ◽  
pp. 185-191 ◽  
Author(s):  
G. Koeniger ◽  
M. Wissel ◽  
W. Herth

1991 ◽  
Vol 23 (4) ◽  
pp. 525-535 ◽  
Author(s):  
J.G. Menzel ◽  
H. Wunderer ◽  
D.G. Stavenga

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Christina M. Burden ◽  
Mira O. Morgan ◽  
Kristen R. Hladun ◽  
Gro V. Amdam ◽  
John J. Trumble ◽  
...  

Author(s):  
Natasha L. Hungerford ◽  
Ujang Tinggi ◽  
Benjamin L. L. Tan ◽  
Madeleine Farrell ◽  
Mary T. Fletcher

Honey is an extensively utilized sweetener containing sugars and water, together with small quantities of vitamins, minerals, fatty acids, amino acids and proteins. Naturally produced by honeybees (Apis mellifera) from floral nectar, honey is increasingly sold as a health food product due to its nutritious features. Certain honeys are retailed as premium, trendy products. Honeybees are regarded as environmental monitors, but few reports examine the impact of environment on Australian honey trace elements and minerals. In higher density urban and industrial environments, heavy metals can be common, while minerals and trace elements can have ubiquitous presence in both agricultural and urban areas. Honey hives are traditionally placed in rural and forested areas, but increasingly the trend is to keep hives in more urban areas. This study aimed to determine the levels of 26 minerals and trace elements and assess elemental differences between honeys from various regional Queensland and Australian sources. Honey samples (n = 212) were acquired from markets, shops and supermarkets in Queensland while urban honeys were purchased online. The honey samples were classified into four groups according to their regional sources: urban, rural, peri-urban and blend honey. Elemental analyses of honey were performed using ICP-MS and ICP-OES after microwave and hot block digestion. Considerable variations of essential trace elements (Co, Cu, Cr, Fe, Mn, Mo and Zn) and mineral levels (Ca, K, Mg, Na and P) were found in honeys surveyed. There were significant differences (p < 0.05) between urban and rural honey samples for B, Na, P, Mn, K, Ca and Cu. Significant differences (p < 0.05) were also found between blend and urban honey samples for K, Cu, P, Mn, Sr, Ni, B and Na. Peri-urban versus urban honeys showed significant differences in P, K and Mn. For rural and peri-urban honeys, the only significant difference (p < 0.05) was for Na. Toxic heavy metals were detected at relatively low levels in honey products. The study revealed that the Queensland/Australian honey studied is a good source of K and Zn and would constitute a good nutritional source of these elements.


2019 ◽  
Vol 5 (2) ◽  
pp. 137-157 ◽  
Author(s):  
X. Fernandez-Cassi ◽  
A. Supeanu ◽  
M. Vaga ◽  
A. Jansson ◽  
S. Boqvist ◽  
...  

Novel foods represent sustainable alternatives to traditional farming and conventional foodstuffs. The house cricket (Acheta domesticus) is considered as one of the most promising reared insects due to their attractive nutritional profile and lower feed conversion ratio compared to other animals. However, putative health hazards associated with consumption of crickets have previously not been investigated. The present study assesses the risks of A. domesticus reared in closed systems controlled by the implementation of hazard analysis and critical control points and good farming practices. Due to the novelty of the topic, data scarcity has been a limiting factor, hence comparative evidence from closely related species belonging to the order Orthoptera (e.g. grasshoppers, locusts, and other cricket species) have been included. The present risk profile identified as main hazards: (1) high total counts of aerobic bacteria; (2) presence of spore-forming bacteria post thermal processing; (3) accumulation of cadmium and other heavy metals; and (4) a possible increase of allergenic reactions due to exposure to insects and insect derived products. Important data gaps regarding edible crickets and their safety as novel foods have been highlighted in the future perspective section, representing aims for future research. Identified data gaps include: (1) farming conditions of the insects being studied; (2) data on the impact of thermal processing of the products prior to consumption; (3) fungal communities and mycotoxins-producing fungi in reared crickets; and (4) heavy metals not fully assessed (chromium, aluminium and arsenic) and other chemical hazards produced during processing (i.e. heterocyclic aromatic amines, acrylamide). The present risk profile explores food safety risks related to consumption of A. domesticus, thereby constituting an example of chemical and microbial hazards risk profiling on edible insects, covering rearing to consumption.


Sign in / Sign up

Export Citation Format

Share Document