scholarly journals THE EFFECT OF CTAB AND SDS SURFACTANT ON THE MORPHOLOGY AND PERFORMANCE OF LOW PRESSURE ACTIVE REVERSE OSMOSIS MEMBRANE

2016 ◽  
Vol 20 (3) ◽  
pp. 510-516 ◽  
Author(s):  
Nurul Syuhada Mohd Ali ◽  
Abdul Rahman Hassan
2007 ◽  
Vol 56 (8) ◽  
pp. 161-168 ◽  
Author(s):  
A.R.A. Razak ◽  
Z. Ujang ◽  
H. Ozaki

Endocrine disrupting chemicals (EDCs) are the focus of current environmental issues, as they can cause adverse health effects to animals and human, subsequent to endocrine function. The objective of this study was to remove a specific compound of EDCs (i.e. pentachlorophenol, C6OCL5Na, molecular weight of 288 g/mol) using low pressure reverse osmosis membrane (LPROM). A cross flow module of LPROM was used to observe the effects of operating parameters, i.e. pH, operating pressure and temperature. The design of the experiment was based on MINITABTM software, and the analysis of results was conducted by factorial analysis. It was found that the rejection of pentachlorophenol was higher than 80% at a recovery rate of 60 to 70%. The rejection was subjected to increase with the increase of pH. The flux was observed to be increased with the increase of operating pressure and temperature. This study also investigated the interaction effects between operating parameters involved.


1998 ◽  
Vol 38 (4-5) ◽  
pp. 521-528 ◽  
Author(s):  
Zaini Ujang ◽  
G. K. Anderson

This paper describes an investigation on the rejection of the divalent anions from ZnSO4 using LPROMs, and to establish the effect of operating pressure, feed concentration and temperature on metal removal, then to compare with the monovalent anions, ZnCl2. A bench-scale spiral wound configuration of sulphonated polysulphone low pressure reverse osmosis membrane (LPROM) was used to remove heavy metals at various operating conditions, i.e. operating conditions, solute concentrations and temperature. The results show that the higher the operating pressure the greater will be the permeate flux for heavy metals from both mono- and divalent anions. At low operating pressure however, metals from the divalent anions give a higher permeate flux than did the monovalent anions. Permeate flux in both mono- and divalent anions is shown to be subsequently increased by a decrease of the concentration of feed solution. Regarding metal removal, metals from divalent anions were rejected more effectively than monovalent anions at all levels of feed concentration.


2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Abdul Rahman Hassan ◽  
Al Dabbaas Khuzama Mansoor A ◽  
Nor Azirah Sulaiman ◽  
Nurul Hannan Mohd Safari ◽  
Sabariah Rozali

Water shortage has become a real problem at global level and therefore, new and innovative technologies were established to provide sustainable solutions to water crisis. One of the effective approaches to resolve the global challenges is introducing the membrane-based desalination. Reverse Osmosis (RO) is a pressure driven membrane process which becoming increasingly popular and widely used for water purification applications that require high salt rejection such as brackish and seawater desalination. In this study, the influence of Sodium dodecyl sulphate (SDS) surfactant in producing the finest membrane for desalination were investigated in terms of performance, morphological structure and molecular orientation. From a polymer blending of polysulfone (PSF)/N-Methyl-2-Pyrrolidone (NMP)/polyvinylpyrrolidone (PVP)/sodium dodecyl sulphate (SDS) were formulated for making of low pressure reverse osmosis (LPRO) membrane. In order to examine the influence of SDS surfactant, different concentration from 0 wt% to 3 wt% were employed for desalination application of 10,000ppm (brackish water) and 50 000ppm (seawater). Experimental data showed that the increasing of 0.5wt% in surfactant produced higher pure water permeation (PWP) and flux. At 2.5wt% of SDS, the LPRO membranes showed the highest PWP of about 44.8L/m2h and brackish water flux at 45.58L/m2h. Meanwhile, at 3.0wt%, the highest flux of seawater at 39.37L/m2h was obtained. Moreover, the optimized LPRO (2wt% of SDS) membrane performed high rejection ratio of 90.9% for brackish water and 90.4% for seawater concentration of 10,000ppm and 50,000ppm, respectively. Therefore, the findings revealed that the fabricated LPRO membrane having a good potential to be used as eco-efficient desalination process of brackish water and seawater technology.


Sign in / Sign up

Export Citation Format

Share Document