Hydrological Modeling of Musi River Basin and Impact Assessment of Land Use Change on Urban Runoff

Author(s):  
G. Srinivas ◽  
Dr. M. Gopal Naik ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 125-131
Author(s):  
Loi Thi Pham ◽  
Khoi Nguyen Dao

Assessing water resources under the influence of environmental change have gained attentions of scientists. The objective of this study was to analyze the impacts of land use change and climate change on water resources in terms quantity and quality in the 3S basin in the period 1981–2008 by using hydrological modeling (SWAT model). The results showed that streamflow and water quality (TSS, T-N, and T-P) tend to increase under individual and combined effects of climate change and land use change. In addition, the impact of land use change on the flow was smaller than the climate change impact. However, water balance components and water quality were equally affected by two factors of climate change and land use change. In general, the results of this study could serve as a reference for water resource management and planning in the river basin.


2021 ◽  
Vol 13 (4) ◽  
pp. 647
Author(s):  
Fan Sun ◽  
Yi Wang ◽  
Yaning Chen ◽  
Yupeng Li ◽  
Qifei Zhang ◽  
...  

The desert-oasis ecotone, as a crucial natural barrier, maintains the stability of oasis agricultural production and protects oasis habitat security. This paper investigates the dynamic evolution of the desert-oasis ecotone in the Tarim River Basin and predicts the near-future land-use change in the desert-oasis ecotone using the cellular automata–Markov (CA-Markov) model. Results indicate that the overall area of the desert-oasis ecotone shows a shrinking trend (from 67,642 km2 in 1990 to 46,613 km2 in 2015) and the land-use change within the desert-oasis ecotone is mainly manifested by the conversion of a large amount of forest and grass area into arable land. The increasing demand for arable land for groundwater has led to a decline in the groundwater level, which is an important reason for the habitat deterioration in the desert-oasis ecotone. The rising temperature and drought have further exacerbated this trend. Assuming the current trend in development without intervention, the CA-Markov model predicts that by 2030, there will be an additional 1566 km2 of arable land and a reduction of 1151 km2 in forested area and grassland within the desert-oasis ecotone, which will inevitably further weaken the ecological barrier role of the desert-oasis ecotone and trigger a growing ecological crisis.


2021 ◽  
Vol 55 (3) ◽  
pp. 1566-1575 ◽  
Author(s):  
Kelsie M. Ferin ◽  
Luoye Chen ◽  
Jia Zhong ◽  
Sarah Acquah ◽  
Emily A. Heaton ◽  
...  

Author(s):  
L. F. de Sousa ◽  
C. A. S. Santos ◽  
R. L. Gomes ◽  
F. A. Rocha ◽  
R. M. de Jesus

Sign in / Sign up

Export Citation Format

Share Document