scholarly journals Machine Learning Model for Movie Recommendation System

Author(s):  
M. Chenna Keshava ◽  
P. Narendra Reddy ◽  
S. Srinivasulu ◽  
B. Dinesh Naik ◽  
IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 28462-28474 ◽  
Author(s):  
Celestine Iwendi ◽  
Suleman Khan ◽  
Joseph Henry Anajemba ◽  
Ali Kashif Bashir ◽  
Fazal Noor

Author(s):  
Celestine Iwendi ◽  
Ebuka Ibeke ◽  
Harshini Eggoni ◽  
Sreerajavenkatareddy Velagala ◽  
Gautam Srivastava

The creation of digital marketing has enabled companies to adopt personalized item recommendations for their customers. This process keeps them ahead of the competition. One of the techniques used in item recommendation is known as item-based recommendation system or item–item collaborative filtering. Presently, item recommendation is based completely on ratings like 1–5, which is not included in the comment section. In this context, users or customers express their feelings and thoughts about products or services. This paper proposes a machine learning model system where 0, 2, 4 are used to rate products. 0 is negative, 2 is neutral, 4 is positive. This will be in addition to the existing review system that takes care of the users’ reviews and comments, without disrupting it. We have implemented this model by using Keras, Pandas and Sci-kit Learning libraries to run the internal work. The proposed approach improved prediction with [Formula: see text] accuracy for Yelp datasets of businesses across 11 metropolitan areas in four countries, along with a mean absolute error (MAE) of [Formula: see text], precision at [Formula: see text], recall at [Formula: see text] and F1-Score at [Formula: see text]. Our model shows scalability advantage and how organizations can revolutionize their recommender systems to attract possible customers and increase patronage. Also, the proposed similarity algorithm was compared to conventional algorithms to estimate its performance and accuracy in terms of its root mean square error (RMSE), precision and recall. Results of this experiment indicate that the similarity recommendation algorithm performs better than the conventional algorithm and enhances recommendation accuracy.


2018 ◽  
Author(s):  
Steen Lysgaard ◽  
Paul C. Jennings ◽  
Jens Strabo Hummelshøj ◽  
Thomas Bligaard ◽  
Tejs Vegge

A machine learning model is used as a surrogate fitness evaluator in a genetic algorithm (GA) optimization of the atomic distribution of Pt-Au nanoparticles. The machine learning accelerated genetic algorithm (MLaGA) yields a 50-fold reduction of required energy calculations compared to a traditional GA.


Author(s):  
Dhilsath Fathima.M ◽  
S. Justin Samuel ◽  
R. Hari Haran

Aim: This proposed work is used to develop an improved and robust machine learning model for predicting Myocardial Infarction (MI) could have substantial clinical impact. Objectives: This paper explains how to build machine learning based computer-aided analysis system for an early and accurate prediction of Myocardial Infarction (MI) which utilizes framingham heart study dataset for validation and evaluation. This proposed computer-aided analysis model will support medical professionals to predict myocardial infarction proficiently. Methods: The proposed model utilize the mean imputation to remove the missing values from the data set, then applied principal component analysis to extract the optimal features from the data set to enhance the performance of the classifiers. After PCA, the reduced features are partitioned into training dataset and testing dataset where 70% of the training dataset are given as an input to the four well-liked classifiers as support vector machine, k-nearest neighbor, logistic regression and decision tree to train the classifiers and 30% of test dataset is used to evaluate an output of machine learning model using performance metrics as confusion matrix, classifier accuracy, precision, sensitivity, F1-score, AUC-ROC curve. Results: Output of the classifiers are evaluated using performance measures and we observed that logistic regression provides high accuracy than K-NN, SVM, decision tree classifiers and PCA performs sound as a good feature extraction method to enhance the performance of proposed model. From these analyses, we conclude that logistic regression having good mean accuracy level and standard deviation accuracy compared with the other three algorithms. AUC-ROC curve of the proposed classifiers is analyzed from the output figure.4, figure.5 that logistic regression exhibits good AUC-ROC score, i.e. around 70% compared to k-NN and decision tree algorithm. Conclusion: From the result analysis, we infer that this proposed machine learning model will act as an optimal decision making system to predict the acute myocardial infarction at an early stage than an existing machine learning based prediction models and it is capable to predict the presence of an acute myocardial Infarction with human using the heart disease risk factors, in order to decide when to start lifestyle modification and medical treatment to prevent the heart disease.


Author(s):  
Dhaval Patel ◽  
Shrey Shrivastava ◽  
Wesley Gifford ◽  
Stuart Siegel ◽  
Jayant Kalagnanam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document