The structure and mechanical properties formed in the soft L63 brass band commercially produced using transverse flux induction heating

2021 ◽  
pp. 69-76
Author(s):  
M. Z. Pevzner ◽  
D. G. Sergeev
1999 ◽  
Vol 35 (3) ◽  
pp. 1642-1645 ◽  
Author(s):  
Z. Wang ◽  
W. Huang ◽  
W. Jia ◽  
Q. Zhao ◽  
Y. Wang ◽  
...  

2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040031
Author(s):  
Stella Raynova ◽  
Khaled Alsharedah ◽  
Fei Yang ◽  
Leandro Bolzoni

A powder metallurgy approach was applied for the synthesis of an [Formula: see text] Ti-2Al-3Fe alloy. Blends of the elemental Ti, Al and Fe powders were compacted and subsequently sintered. High-frequency induction heating (HFIH) instead of conventional high-vacuum furnace heating was used for the sintering, due to its high efficiency. The effect of temperature on the level of densification, residual porosity and mechanical properties was studied. Electron dispersive spectrum analysis was used to study the dissolution and homogenization of the alloying elements. The results showed that a short induction sintering (IS) cycle in the range of 10–15 min is sufficient to achieve significant powder consolidation, evident by the increase of the density and mechanical properties. The residual porosity diminishes with the increase of the sintering temperature. Full dissolution of the alloying powders is completed after sintering at temperatures above those of [Formula: see text]- to [Formula: see text]-phase transformation.


Author(s):  
Takuro Terajima ◽  
Takashi Hirano

As a counter measurement of intergranular stress corrosion cracking (IGSCC) in boiling water reactors, the induction heating stress improvement (IHSI) has been developed as a method to improve the stress factor, especially residual stresses in affected areas of pipe joint welds. In this method, a pipe is heated from the outside by an induction coil and cooled from the inside with water simultaneously. By thermal stresses to produce a temperature differential between the inner and outer pipe surfaces, the residual stress inside the pipe is improved compression. IHSI had been applied to weld joints of austenitic stainless steel pipes (P-8+P-8). However IHSI had not been applied to weld joints of nickel-chromium-iron alloy (P-43) and austenitic stainless steel (P-8). This weld joint (P-43+P-8) is used for instrumentation nozzles in nuclear power plants’ reactor pressure vessels. Therefore for the purpose of applying IHSI to this one, we studied the following. i) Investigation of IHSI conditions (Essential Variables); ii) Residual stresses after IHSI; iii) Mechanical properties after IHSI. This paper explains that IHSI is sufficiently effective in improvement of the residual stresses for this weld joint (P-43+P-8), and that IHSI does not cause negative effects by results of mechanical properties, and IHSI is verified concerning applying it to this kind of weld joint.


2013 ◽  
Vol 568 ◽  
pp. 73-77 ◽  
Author(s):  
Wonbaek Kim ◽  
Chang-Yul Suh ◽  
Ki-Min Roh ◽  
Sung-Wook Cho ◽  
Kwon-Il Na ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document