GEOMETRIC CLASSIFICATION OF ANALYTICAL SOLUTIONS OF FITZHUGH-NAGUMO EQUATION AND ITS GENERALIZATION AS THE REACTION-DIFFUSION EQUATION

2021 ◽  
Vol 24 (2) ◽  
pp. 167-174
Author(s):  
Atefeh Hasan-Zadeh
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Razvan Gabriel Iagar ◽  
Ana Isabel Muñoz ◽  
Ariel Sánchez

<p style='text-indent:20px;'>We classify the finite time blow-up profiles for the following reaction-diffusion equation with unbounded weight:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \partial_tu = \Delta u^m+|x|^{\sigma}u^p, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>posed in any space dimension <inline-formula><tex-math id="M1">\begin{document}$ x\in \mathbb{R}^N $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ t\geq0 $\end{document}</tex-math></inline-formula> and with exponents <inline-formula><tex-math id="M3">\begin{document}$ m&gt;1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ p\in(0, 1) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ \sigma&gt;2(1-p)/(m-1) $\end{document}</tex-math></inline-formula>. We prove that blow-up profiles in backward self-similar form exist for the indicated range of parameters, showing thus that the unbounded weight has a strong influence on the dynamics of the equation, merging with the nonlinear reaction in order to produce finite time blow-up. We also prove that all the blow-up profiles are <i>compactly supported</i> and might present two different types of interface behavior and three different possible <i>good behaviors</i> near the origin, with direct influence on the blow-up behavior of the solutions. We classify all these profiles with respect to these different local behaviors depending on the magnitude of <inline-formula><tex-math id="M6">\begin{document}$ \sigma $\end{document}</tex-math></inline-formula>. This paper generalizes in dimension <inline-formula><tex-math id="M7">\begin{document}$ N&gt;1 $\end{document}</tex-math></inline-formula> previous results by the authors in dimension <inline-formula><tex-math id="M8">\begin{document}$ N = 1 $\end{document}</tex-math></inline-formula> and also includes some finer classification of the profiles for <inline-formula><tex-math id="M9">\begin{document}$ \sigma $\end{document}</tex-math></inline-formula> large that is new even in dimension <inline-formula><tex-math id="M10">\begin{document}$ N = 1 $\end{document}</tex-math></inline-formula>.</p>


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 134
Author(s):  
Luca Salasnich

We study the power spectrum of a space-time dependent neural field which describes the average membrane potential of neurons in a single layer. This neural field is modelled by a dissipative integro-differential equation, the so-called Amari equation. By considering a small perturbation with respect to a stationary and uniform configuration of the neural field we derive a linearized equation which is solved for a generic external stimulus by using the Fourier transform into wavevector-freqency domain, finding an analytical formula for the power spectrum of the neural field. In addition, after proving that for large wavelengths the linearized Amari equation is equivalent to a diffusion equation which admits space-time dependent analytical solutions, we take into account the nonlinearity of the Amari equation. We find that for large wavelengths a weak nonlinearity in the Amari equation gives rise to a reaction-diffusion equation which can be formally derived from a neural action functional by introducing a dual neural field. For some initial conditions, we discuss analytical solutions of this reaction-diffusion equation.


Author(s):  
Mohammad Ramezani

AbstractThe main propose of this paper is presenting an efficient numerical scheme to solve WSGD scheme for one- and two-dimensional distributed order fractional reaction–diffusion equation. The proposed method is based on fractional B-spline basics in collocation method which involve Caputo-type fractional derivatives for $$0 < \alpha < 1$$ 0 < α < 1 . The most significant privilege of proposed method is efficient and quite accurate and it requires relatively less computational work. The solution of consideration problem is transmute to the solution of the linear system of algebraic equations which can be solved by a suitable numerical method. The finally, several numerical WSGD Scheme for one- and two-dimensional distributed order fractional reaction–diffusion equation.


Sign in / Sign up

Export Citation Format

Share Document