HEAT TRANSFER IN TWO-DIMENSIONAL RAYLEIGH-BÉNARD CONVECTION AT DIFFERENT RAYLEIGH NUMBER FOR MIXED BOUNDARY CONDITIONS

2017 ◽  
Vol 14 (1) ◽  
pp. 1-11
Author(s):  
Chongyang Zhao ◽  
Yikun Wei
2017 ◽  
Vol 835 ◽  
pp. 491-511 ◽  
Author(s):  
Dennis Bakhuis ◽  
Rodolfo Ostilla-Mónico ◽  
Erwin P. van der Poel ◽  
Roberto Verzicco ◽  
Detlef Lohse

A series of direct numerical simulations of Rayleigh–Bénard convection, the flow in a fluid layer heated from below and cooled from above, were conducted to investigate the effect of mixed insulating and conducting boundary conditions on convective flows. Rayleigh numbers between $Ra=10^{7}$ and $Ra=10^{9}$ were considered, for Prandtl numbers $\mathit{Pr}=1$ and $\mathit{Pr}=10$. The bottom plate was divided into patterns of conducting and insulating stripes. The size ratio between these stripes was fixed to unity and the total number of stripes was varied. Global quantities, such as the heat transport and average bulk temperature, and local quantities, such as the temperature just below the insulating boundary wall, were investigated. For the case with the top boundary divided into two halves, one conducting and one insulating, the heat transfer was found to be approximately two-thirds of that for the fully conducting case. Increasing the pattern frequency increased the heat transfer, which asymptotically approached the fully conducting case, even if only half of the surface is conducting. Fourier analysis of the temperature field revealed that the imprinted pattern of the plates is diffused in the thermal boundary layers, and cannot be detected in the bulk. With conducting–insulating patterns on both plates, the trends previously described were similar; however, the half-and-half division led to a heat transfer of about a half of that for the fully conducting case instead of two-thirds. The effect of the ratio of conducting and insulating areas was also analysed, and it was found that, even for systems with a top plate with only 25 % conducting surface, heat transport of 60 % of the fully conducting case can be seen. Changing the one-dimensional stripe pattern to a two-dimensional chequerboard tessellation does not result in a significantly different response of the system.


A recent study by Cross et al . (1980) has described a class of finite-amplitude phase-winding solutions of the problem of two-dimensional Rayleigh-Bénard convection in a shallow fluid layer of aspect ratio 2 L (≫ 1) confined laterally by rigid side-walls. These solutions arise at Rayleigh numbers R = R 0 + O ( L -1 ) where R 0 is the critical Rayleigh number for the corresponding infinite layer. Nonlinear solutions of constant phase exist for Rayleigh numbers R = R 0 + O ( L -2 ) but of these only the two that bifurcate at the lowest value of R are stable to two-dimensional linearized disturbances in this range (Daniels 1978). In the present paper one set of the class of phase-winding solutions is found to be stable to two-dimensional disturbances. For certain values of the Prandtl number of the fluid and for stress-free horizontal boundaries the results predict that to preserve stability there must be a continual readjustment of the roll pattern as the Rayleigh number is raised, with a corresponding increase in wavelength proportional to R - R 0 . These solutions also exhibit hysteresis as the Rayleigh number is raised and lowered. For other values of the Prandtl number the number of rolls remains unchanged as the Rayleigh number is raised, and the wavelength remains close to its critical value. It is proposed that the complete evolution of the flow pattern from a static state must take place on a number of different time scales of which t = O(( R - R 0 ) -1 ) and t = O(( R - R 0 ) -2 ) are the most significant. When t = O(( R - R 0 ) -1 ) the amplitude of convection rises from zero to its steady-state value, but the final lateral positioning of the rolls is only completed on the much longer time scale t = O(( R - R 0 ) -2 ).


2021 ◽  
Vol 136 (1) ◽  
pp. 10003
Author(s):  
Lucas Méthivier ◽  
Romane Braun ◽  
Francesca Chillà ◽  
Julien Salort

Abstract We present measurements of the global heat transfer and the velocity field in two Rayleigh-Bénard cells (aspect ratios 1 and 2). We use Fluorinert FC770 as the working fluid, up to a Rayleigh number . The velocity field is inferred from sequences of shadowgraph pattern using a Correlation Image Velocimetry (CIV) algorithm. Indeed the large number of plumes, and their small characteristic scale, make it possible to use the shadowgraph pattern produced by the thermal plumes in the same manner as particles in Particle Image Velocimetry (PIV). The method is validated in water against PIV, and yields identical wind velocity estimates. The joint heat transfer and velocity measurements allow to compute the scaling of the kinetic dissipation rate which features a transition from a laminar scaling to a turbulent Re 3 scaling. We propose that the turbulent transition in Rayleigh-Bénard convection is controlled by a threshold Péclet number rather than a threshold Rayleigh number, which may explain the apparent discrepancy in the literature regarding the “ultimate” regime of convection.


2012 ◽  
Vol 24 (8) ◽  
pp. 085104 ◽  
Author(s):  
Erwin P. van der Poel ◽  
Richard J. A. M. Stevens ◽  
Kazuyasu Sugiyama ◽  
Detlef Lohse

2009 ◽  
Vol 25 (2) ◽  
pp. 205-212 ◽  
Author(s):  
L.-S. Kuo ◽  
P.-H. Chen

AbstractThis work studied the Rayleigh-Bénard convection under the first-order slip boundary conditions in both hydrodynamic and thermal fields. The variation principle was applied to find the critical Rayleigh number of instability. The exteneded relations of the critical Rayleigh number (Rc) and the wavenumber (ac) under partially slip boundary conditions were derived. The numerical results showed that both Rc and ac are decreasing with increasing the Knudsen number. The dependence of Rc on the Knudsen number (K) shows that when K≤10−3, the boundary can be considered as nonslip, while K≥10, it can be considered as free boundaries. The maximum change rate occurs when the Knudsen number is around 0.1, indicating that the system would be affected significantly in that range.


2017 ◽  
Vol 836 ◽  
Author(s):  
Yi-Zhao Zhang ◽  
Chao Sun ◽  
Yun Bao ◽  
Quan Zhou

Rough surfaces have been widely used as an efficient way to enhance the heat-transfer efficiency in turbulent thermal convection. In this paper, however, we show that roughness does not always mean a heat-transfer enhancement, but in some cases it can also reduce the overall heat transport through the system. To reveal this, we carry out numerical investigations of turbulent Rayleigh–Bénard convection over rough conducting plates. Our study includes two-dimensional (2D) simulations over the Rayleigh number range $10^{7}\leqslant Ra\leqslant 10^{11}$ and three-dimensional (3D) simulations at $Ra=10^{8}$. The Prandtl number is fixed to $Pr=0.7$ for both the 2D and the 3D cases. At a fixed Rayleigh number $Ra$, reduction of the Nusselt number $Nu$ is observed for small roughness height $h$, whereas heat-transport enhancement occurs for large $h$. The crossover between the two regimes yields a critical roughness height $h_{c}$, which is found to decrease with increasing $Ra$ as $h_{c}\sim Ra^{-0.6}$. Through dimensional analysis, we provide a physical explanation for this dependence. The physical reason for the $Nu$ reduction is that the hot/cold fluid is trapped and accumulated inside the cavity regions between the rough elements, leading to a much thicker thermal boundary layer and thus impeding the overall heat flux through the system.


Sign in / Sign up

Export Citation Format

Share Document