The effect of distant side-walls on the evolution and stability of finite-amplitude Rayleigh-Bénard convection

A recent study by Cross et al . (1980) has described a class of finite-amplitude phase-winding solutions of the problem of two-dimensional Rayleigh-Bénard convection in a shallow fluid layer of aspect ratio 2 L (≫ 1) confined laterally by rigid side-walls. These solutions arise at Rayleigh numbers R = R 0 + O ( L -1 ) where R 0 is the critical Rayleigh number for the corresponding infinite layer. Nonlinear solutions of constant phase exist for Rayleigh numbers R = R 0 + O ( L -2 ) but of these only the two that bifurcate at the lowest value of R are stable to two-dimensional linearized disturbances in this range (Daniels 1978). In the present paper one set of the class of phase-winding solutions is found to be stable to two-dimensional disturbances. For certain values of the Prandtl number of the fluid and for stress-free horizontal boundaries the results predict that to preserve stability there must be a continual readjustment of the roll pattern as the Rayleigh number is raised, with a corresponding increase in wavelength proportional to R - R 0 . These solutions also exhibit hysteresis as the Rayleigh number is raised and lowered. For other values of the Prandtl number the number of rolls remains unchanged as the Rayleigh number is raised, and the wavelength remains close to its critical value. It is proposed that the complete evolution of the flow pattern from a static state must take place on a number of different time scales of which t = O(( R - R 0 ) -1 ) and t = O(( R - R 0 ) -2 ) are the most significant. When t = O(( R - R 0 ) -1 ) the amplitude of convection rises from zero to its steady-state value, but the final lateral positioning of the rolls is only completed on the much longer time scale t = O(( R - R 0 ) -2 ).

1984 ◽  
Vol 143 ◽  
pp. 125-152 ◽  
Author(s):  
P. G. Daniels

This paper considers the temporal evolution of two-dimensional Rayleigh–Bénard convection in a shallow fluid layer of aspect ratio 2L ([Gt ] 1) confined laterally by rigid sidewalls. Recent studies by Cross et al. (1980, 1983) have shown that for Rayleigh numbers in the range R = R0 + O(L−1) (where R0 is the critical Rayleigh number for the corresponding infinite layer) there exists a class of finite-amplitude steady-state ‘phase-winding’ solutions which correspond physically to the possibility of an adjustment in the number of rolls in the container as the local value of the Rayleigh number is varied. It has been shown (Daniels 1981) that in the temporal evolution of the system the final lateral positioning of the rolls occurs on the long timescale t = O(L2) when the phase function which determines the number of rolls in the system satisfies a one-dimensional diffusion equation but with novel boundary conditions that represent the effect of the sidewalls. In the present paper this system is solved numerically in order to determine the precise way in which the roll pattern adjusts after a change in the Rayleigh number of the system. There is an interesting balance between, on the one hand, a tendency for the number of rolls to change by the least number possible and, on the other, a tendency for the even or odd nature of the initial configuration to be preserved during the transition. In some cases this second property renders the natural evolution susceptible to arbitrarily small external disturbances, which then dictate the form of the final roll pattern.The complete transition involves an analysis of the motion on three timescales, a conductive scale t = O(1), a convective growth scale t = O(L) and a convective diffusion scale t = O(L2).


2015 ◽  
Vol 785 ◽  
pp. 270-282 ◽  
Author(s):  
L. Skrbek ◽  
P. Urban

An important question in turbulent Rayleigh–Bénard convection is the scaling of the Nusselt number with the Rayleigh number in the so-called ultimate state, corresponding to asymptotically high Rayleigh numbers. A related but separate question is whether the measurements support the so-called Kraichnan law, according to which the Nusselt number varies as the square root of the Rayleigh number (modulo a logarithmic factor). Although there have been claims that the Kraichnan regime has been observed in laboratory experiments with low aspect ratios, the totality of existing experimental results presents a conflicting picture in the high-Rayleigh-number regime. We analyse the experimental data to show that the claims on the ultimate state leave open an important consideration relating to non-Oberbeck–Boussinesq effects. Thus, the nature of scaling in the ultimate state of Rayleigh–Bénard convection remains open.


2021 ◽  
Vol 915 ◽  
Author(s):  
Xiao-Ming Li ◽  
Ji-Dong He ◽  
Ye Tian ◽  
Peng Hao ◽  
Shi-Di Huang

Abstract


2012 ◽  
Vol 24 (8) ◽  
pp. 085104 ◽  
Author(s):  
Erwin P. van der Poel ◽  
Richard J. A. M. Stevens ◽  
Kazuyasu Sugiyama ◽  
Detlef Lohse

2000 ◽  
Vol 414 ◽  
pp. 225-250 ◽  
Author(s):  
C. LEMERY ◽  
Y. RICARD ◽  
J. SOMMERIA

We propose a two-dimensional model of three-dimensional Rayleigh–Bénard convection in the limit of very high Prandtl number and Rayleigh number, as in the Earth's mantle. The model equation describes the evolution of the first moment of the temperature anomaly in the thermal boundary layer, which is assumed thin with respect to the scale of motion. This two-dimensional field is transported by the velocity that it induces and is amplified by surface divergence. This model explains the emergence of thermal plumes, which arise as finite-time singularities. We determine critical exponents for these singularities. Using a smoothing method we go beyond the singularity and reach a stage of developed convection. We describe a process of plume merging, leaving room for the birth of new instabilities. The heat flow at the surface predicted by our two-dimensional model is found to be in good agreement with available data.


Sign in / Sign up

Export Citation Format

Share Document