ON THE ONSET OF CONVECTION IN A COUPLE STRESS FLUID SATURATED ROTATING ANISOTROPIC POROUS LAYERS USING THERMAL NON-EQUILIBRIUM MODEL

2019 ◽  
Vol 16 (1) ◽  
pp. 125-142
Author(s):  
Krishna B. Chavaraddi ◽  
N. K. Enagi ◽  
Sridhar Kulkarni
Author(s):  
Sunil ◽  
Shalu Choudhary ◽  
Amit Mahajan

Abstract.A nonlinear stability threshold for convection in a rotating couple-stress fluid saturating a porous medium with temperature- and pressure-dependent viscosity using a thermal non-equilibrium model is found to be exactly the same as the linear instability boundary. This optimal result is important because it shows that linear theory has completely captured the physics of the onset of convection. The effects of couple-stress fluid parameter


2016 ◽  
Vol 38 (1) ◽  
pp. 55-63
Author(s):  
Chander Bhan Mehta

Abstract The study is aimed at analysing thermal convection in a compressible couple stress fluid in a porous medium in the presence of rotation and magnetic field. After linearizing the relevant equations, the perturbation equations are analysed in terms of normal modes. A dispersion relation governing the effects of rotation, magnetic field, couple stress parameter and medium permeability have been examined. For a stationary convection, the rotation postpones the onset of convection in a couple stress fluid heated from below in a porous medium in the presence of a magnetic field. Whereas, the magnetic field and couple stress postpones and hastens the onset of convection in the presence of rotation and the medium permeability hastens and postpones the onset of convection with conditions on Taylor number. Further the oscillatory modes are introduced due to the presence of rotation and the magnetic field which were non-existent in their absence, and hence the principle of exchange stands valid. The sufficient conditions for nonexistence of over stability are also obtained.


2011 ◽  
Vol 66 (5) ◽  
pp. 304-310 ◽  
Author(s):  
Pardeep Kumar ◽  
Hari Mohan

The double-diffusive convection in a compressible couple-stress fluid layer heated and soluted from below through porous medium is considered in the presence of a uniform vertical magnetic field. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For stationary convection, the compressibility, stable solute gradient, magnetic field, and couple-stress postpone the onset of convection whereas medium permeability hastens the onset of convection. Graphs have been plotted by giving numerical values to the parameters to depict the stability characteristics. The stable solute gradient and magnetic field introduce oscillatory modes in the system, which were non-existent in their absence. A condition for the system to be stable is obtained by using the Rayleigh-Ritz inequality. The sufficient conditions for the non-existence of overstability are also obtained.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 657
Author(s):  
Maria Thomas ◽  
Sangeetha George K

The outset of convection in a thin layer of couple stress fluid is analyzed using the linear stability analysis when the fluid is heated from below. In order to assimilate the inertial effects Maxwell-Cattaneo law is used in lieu of the classical Fourier's heat conduction law. The normal mode analysis is used to arrive at the eigenvalues of the perturbed state and a regular perturbation method to find the analytical solutions. The effect of Cattaneo number, couple stress parameter and Prandtl number is discussed and it is concluded that gravity modulation can delay or advance the onset of convection.  


2019 ◽  
Vol 41 (1) ◽  
pp. 13-20
Author(s):  
Shalu Choudhary ◽  

Abstract We show that the global non-linear stability threshold for convection in a double-diffusive couple-stress fluid saturating a porous medium is exactly the same as the linear instability boundary. The optimal result is important because it shows that linearized instability theory has captured completely the physics of the onset of convection. It is also found that couple-stress fluid saturating a porous medium is thermally more stable than the ordinary viscous fluid, and the effects of couple-stress parameter (F ) , solute gradient ( S f ) and Brinkman number ( D a ) on the onset of convection is also analyzed.


Sign in / Sign up

Export Citation Format

Share Document