Double-Diffusive Magneto Convection in a Compressible Couple-Stress Fluid Through Porous Medium

2011 ◽  
Vol 66 (5) ◽  
pp. 304-310 ◽  
Author(s):  
Pardeep Kumar ◽  
Hari Mohan

The double-diffusive convection in a compressible couple-stress fluid layer heated and soluted from below through porous medium is considered in the presence of a uniform vertical magnetic field. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For stationary convection, the compressibility, stable solute gradient, magnetic field, and couple-stress postpone the onset of convection whereas medium permeability hastens the onset of convection. Graphs have been plotted by giving numerical values to the parameters to depict the stability characteristics. The stable solute gradient and magnetic field introduce oscillatory modes in the system, which were non-existent in their absence. A condition for the system to be stable is obtained by using the Rayleigh-Ritz inequality. The sufficient conditions for the non-existence of overstability are also obtained.

2016 ◽  
Vol 38 (1) ◽  
pp. 55-63
Author(s):  
Chander Bhan Mehta

Abstract The study is aimed at analysing thermal convection in a compressible couple stress fluid in a porous medium in the presence of rotation and magnetic field. After linearizing the relevant equations, the perturbation equations are analysed in terms of normal modes. A dispersion relation governing the effects of rotation, magnetic field, couple stress parameter and medium permeability have been examined. For a stationary convection, the rotation postpones the onset of convection in a couple stress fluid heated from below in a porous medium in the presence of a magnetic field. Whereas, the magnetic field and couple stress postpones and hastens the onset of convection in the presence of rotation and the medium permeability hastens and postpones the onset of convection with conditions on Taylor number. Further the oscillatory modes are introduced due to the presence of rotation and the magnetic field which were non-existent in their absence, and hence the principle of exchange stands valid. The sufficient conditions for nonexistence of over stability are also obtained.


2019 ◽  
Vol 41 (1) ◽  
pp. 13-20
Author(s):  
Shalu Choudhary ◽  

Abstract We show that the global non-linear stability threshold for convection in a double-diffusive couple-stress fluid saturating a porous medium is exactly the same as the linear instability boundary. The optimal result is important because it shows that linearized instability theory has captured completely the physics of the onset of convection. It is also found that couple-stress fluid saturating a porous medium is thermally more stable than the ordinary viscous fluid, and the effects of couple-stress parameter (F ) , solute gradient ( S f ) and Brinkman number ( D a ) on the onset of convection is also analyzed.


2018 ◽  
Vol 15 (1) ◽  
pp. 148-155
Author(s):  
W. Stanly ◽  
R. Vasanthakumari

Purpose The purpose of this paper is used to study the combined effect of solute gradient and magnetic field on dusty couple-stress fluid in the presence of rotation through a porous medium. Design/methodology/approach The perturbation technique (experimental method) is applied in this study. Findings For the case of stationary convection, solute gradient and rotation have stabilizing effect, whereas destabilizing effect is found in dust particles in the system. Couple stress and medium permeability both have dual character to its stabilizing effect in the absence of magnetic field and rotation. Magnetic field succeeded in establishing a stabilizing effect in the absence of rotation. Originality/value The results are discussed by allowing one variable to vary and keeping other variables constant, as well as by drawing graphs.


2018 ◽  
Vol 23 (4) ◽  
pp. 963-976
Author(s):  
M. Singh

Abstract An investigation made on the effect of Hall currents on double-diffusive convection of a compressible synovial (couple-stress) fluid in the presence of a horizontal magnetic field through a porous layer is considered. The analysis is carried out within the framework of linear stability theory and normal mode technique. A dispersion relation governing the effects of viscoelasticity, compressibility, magnetic field and porous layer is derived. For the stationary convection, a synovial fluid behaves like an ordinary Newtonian fluid due to the vanishing of the viscoelastic parameter. The stable-solute gradient, compressibility, and magnetic field have postponed the onset of convection, whereas Hall currents and medium permeability have not postponed the onset of convection, moreover, a synovial fluid has a dual character in the presence of Hall currents, whereas in the absence of Hall current in synovial fluid have postponed the onset of convection, which is in contrast in case of thermal convection couple-stress fluid with same effects. These analytic results are confirmed numerically and the effects of various parameters are depicted graphically. It has been observed that oscillatory modes are introduced due to the presence of viscoelasticity, magnetic field, porous medium and Hall currents which were non- existent in their absence. The sufficient conditions for the non-existence of overstability are also obtained.


2014 ◽  
Vol 62 (2) ◽  
pp. 357-362
Author(s):  
Gian C. Rana

Abstract In this paper, the effect of magnetic field on thermal convection in couple-stress fluid saturating a porous medium is considered. By applying linear stability theory and the normal mode analysis method, a mathematical theorem is derived which states that the viscoelastic thermal convection at marginal state, cannot manifest as stationary convection if the thermal Rayleigh number R, the medium permeability parameter Pι the couple-stress parameter F and the Chandrasekher number Q, satisfy the inequality the result clearly establishes the stabilizing character of couple-stress parameter and magnetic field whereas destabilizing character of medium permeability.


2013 ◽  
Vol 18 (1) ◽  
pp. 99-112 ◽  
Author(s):  
P. Kumar ◽  
H. Mohan

Thermosolutal instability in a compressible Walters B’ viscoelastic fluid with suspended particles through a porous medium is considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For stationary convection, the Walters B’ viscoelastic fluid behaves like a Newtonian fluid and it is found that suspended particles and medium permeability have a destabilizing effect whereas the stable solute gradient and compressibility have a stabilizing effect on the system. Graphs have been plotted by giving numerical values to the parameters to depict the stability characteristics. The stable solute gradient and viscoelasticity are found to introduce oscillatory modes in the system which are non-existent in their absence.


2013 ◽  
Vol 18 (3) ◽  
pp. 871-886
Author(s):  
M. Singh ◽  
R.K. Gupta

Abstract The effect of Hall currents and suspended dusty particles on the hydromagnetic stability of a compressible, electrically conducting Rivlin-Ericksen elastico viscous fluid in a porous medium is considered. Following the linearized stability theory and normal mode analysis the dispersion relation is obtained. For the case of stationary convection, Hall currents and suspended particles are found to have destabilizing effects whereas compressibility and magnetic field have stabilizing effects on the system. The medium permeability, however, has stabilizing and destabilizing effects on thermal instability in contrast to its destabilizing effect in the absence of the magnetic field. The critical Rayleigh numbers and the wave numbers of the associated disturbances for the onset of instability as stationary convection are obtained and the behavior of various parameters on critical thermal Rayleigh numbers are depicted graphically. The magnetic field, Hall currents and viscoelasticity parameter are found to introduce oscillatory modes in the systems, which did not exist in the absence of these parameters


2009 ◽  
Vol 64 (7-8) ◽  
pp. 448-454
Author(s):  
Pardeep Kumar ◽  
Mahinder Singh

AbstractThe thermosolutal instability of couple-stress fluid in the presence of uniform vertical rotation is considered. Following the linearized stability theory and normal mode analysis, the dispersion is obtained. For the case of stationary convection, the stable solute gradient and rotation have stabilizing effects on the system, whereas the couple-stress has both stabilizing and destabilizing effects. The dispersion relation is also analyzed numerically. The stable solute gradient and the rotation introduce oscillatory modes in the system, which did not occur in their absence. The sufficient conditions for the non-existence of overstability are also obtained.


2014 ◽  
Vol 6 (1) ◽  
pp. 24-45
Author(s):  
G. C. Rana

AbstractThe thermosolutal instability of Rivlin-Ericksen elasticoviscous rotating fluid permeated with suspended particles (fine dust) and variable gravity field in porous medium in hydromagnetics is considered. By applying normal mode analysis method, the dispersion relation has been derived and solved analytically. It is observed that the rotation, magnetic field, gravity field, suspended particles and viscoelasticity introduce oscillatory modes. For stationary convection, the rotation and stable solute gradient has stabilizing effects and suspended particles are found to have destabilizing effect on the system whereas the medium permeability has stabilizing or destabilizing effect on the system under certain conditions. The magnetic field has destabilizing effect in the absence of rotation whereas in the presence of rotation, magnetic field has stabilizing or destabilizing effect under certain conditions. The effect of rotation, suspended particles, magnetic field, stable solute gradient and medium permeability has also been shown graphically.


2016 ◽  
Vol 37 (3) ◽  
pp. 3-18 ◽  
Author(s):  
Amrish Kumar Aggarwal ◽  
Anushri Verma

Abstract In this paper, effect of Hall currents on the thermal instability of couple-stress fluid permeated with dust particles has been considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For the case of stationary convection, dust particles and Hall currents are found to have destabilizing effect while couple stresses have stabilizing effect on the system. Magnetic field induced by Hall currents has stabilizing/destabilizing effect under certain conditions. It is found that due to the presence of Hall currents (hence magnetic field), oscillatory modes are produced which were non-existent in their absence.


Sign in / Sign up

Export Citation Format

Share Document