PREDICTION INTERVALS FOR TIME SERIES USING NEURAL NETWORKS BASED ON WAVELET-CORE

2016 ◽  
Vol 100 (3) ◽  
pp. 413-425
Author(s):  
Grigoriy Belyavskiy ◽  
Valentina Misyura ◽  
Evgeny Puchkov
Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Chunyang Sheng ◽  
Haixia Wang ◽  
Xiao Lu ◽  
Zhiguo Zhang ◽  
Wei Cui ◽  
...  

To overcome the weakness of generic neural networks (NNs) ensemble for prediction intervals (PIs) construction, a novel Map-Reduce framework-based distributed NN ensemble consisting of several local Gaussian granular NN (GGNNs) is proposed in this study. Each local network is weighted according to its contribution to the ensemble model. The weighted coefficient is estimated by evaluating the performance of the constructed PIs from each local network. A new evaluation principle is reported with the consideration of the predicting indices. To estimate the modelling uncertainty and the data noise simultaneously, the Gaussian granular is introduced to the numeric NNs. The constructed PIs can then be calculated by the variance of output distribution of each local NN, i.e., the summation of the model uncertainty variance and the data noise variance. To verify the effectiveness of the proposed model, a series of prediction experiments, including two classical time series with additive noise and two industrial time series, are carried out here. The results indicate that the proposed distributed GGNNs ensemble exhibits a good performance for PIs construction.


Author(s):  
Muhammad Faheem Mushtaq ◽  
Urooj Akram ◽  
Muhammad Aamir ◽  
Haseeb Ali ◽  
Muhammad Zulqarnain

It is important to predict a time series because many problems that are related to prediction such as health prediction problem, climate change prediction problem and weather prediction problem include a time component. To solve the time series prediction problem various techniques have been developed over many years to enhance the accuracy of forecasting. This paper presents a review of the prediction of physical time series applications using the neural network models. Neural Networks (NN) have appeared as an effective tool for forecasting of time series.  Moreover, to resolve the problems related to time series data, there is a need of network with single layer trainable weights that is Higher Order Neural Network (HONN) which can perform nonlinearity mapping of input-output. So, the developers are focusing on HONN that has been recently considered to develop the input representation spaces broadly. The HONN model has the ability of functional mapping which determined through some time series problems and it shows the more benefits as compared to conventional Artificial Neural Networks (ANN). The goal of this research is to present the reader awareness about HONN for physical time series prediction, to highlight some benefits and challenges using HONN.


2016 ◽  
Vol 9 (1) ◽  
pp. 53-62 ◽  
Author(s):  
R. D. García ◽  
O. E. García ◽  
E. Cuevas ◽  
V. E. Cachorro ◽  
A. Barreto ◽  
...  

Abstract. This paper presents the reconstruction of a 73-year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural networks (ANNs) from 1941 to 2001 and AOD measurements directly obtained with a Precision Filter Radiometer (PFR) between 2003 and 2013. The analysis is limited to summer months (July–August–September), when the largest aerosol load is observed at IZO (Saharan mineral dust particles). The ANN AOD time series has been comprehensively validated against coincident AOD measurements performed with a solar spectrometer Mark-I (1984–2009) and AERONET (AErosol RObotic NETwork) CIMEL photometers (2004–2009) at IZO, obtaining a rather good agreement on a daily basis: Pearson coefficient, R, of 0.97 between AERONET and ANN AOD, and 0.93 between Mark-I and ANN AOD estimates. In addition, we have analysed the long-term consistency between ANN AOD time series and long-term meteorological records identifying Saharan mineral dust events at IZO (synoptical observations and local wind records). Both analyses provide consistent results, with correlations  >  85 %. Therefore, we can conclude that the reconstructed AOD time series captures well the AOD variations and dust-laden Saharan air mass outbreaks on short-term and long-term timescales and, thus, it is suitable to be used in climate analysis.


2021 ◽  
Vol 441 ◽  
pp. 161-178
Author(s):  
Philip B. Weerakody ◽  
Kok Wai Wong ◽  
Guanjin Wang ◽  
Wendell Ela

Sign in / Sign up

Export Citation Format

Share Document