AN IMPROVED APPLE SCAB WARNING SYSTEM: CONSIDERATION OF THE BIOLOGICAL PARAMETERS, ASCOSPORE PRESENCE AND LEAF GROWTH, IN ADDITION TO MICROCLIMATIC FACTORS

1993 ◽  
pp. 115-126
Author(s):  
M. Bühler ◽  
C. Gessler ◽  
J. Boos
2011 ◽  
Vol 201-203 ◽  
pp. 2504-2508
Author(s):  
Hong Wei Liu ◽  
Yan Yang Liang ◽  
Hui Zhang

This paper firstly summarizes the morphological characteristics of rice leaf through observation of the rice leaf growth process. And then the mathematical model of the rice leaf growing is established based on experimental data. In this model, the vectorization of rice leaf morphology and growth process is realized by only several explicit biological parameters. The visualization of the rice leaf growth process is realized in computer by technique of computer graphics and the combination of VC++ and OpenGL. The simulation results show that the proposed model can simulate the growth process of the rice leaf very well on the computer easily with less parameter.


2012 ◽  
Vol 82 (3) ◽  
pp. 216-222 ◽  
Author(s):  
Venkatesh Iyengar ◽  
Ibrahim Elmadfa

The food safety security (FSS) concept is perceived as an early warning system for minimizing food safety (FS) breaches, and it functions in conjunction with existing FS measures. Essentially, the function of FS and FSS measures can be visualized in two parts: (i) the FS preventive measures as actions taken at the stem level, and (ii) the FSS interventions as actions taken at the root level, to enhance the impact of the implemented safety steps. In practice, along with FS, FSS also draws its support from (i) legislative directives and regulatory measures for enforcing verifiable, timely, and effective compliance; (ii) measurement systems in place for sustained quality assurance; and (iii) shared responsibility to ensure cohesion among all the stakeholders namely, policy makers, regulators, food producers, processors and distributors, and consumers. However, the functional framework of FSS differs from that of FS by way of: (i) retooling the vulnerable segments of the preventive features of existing FS measures; (ii) fine-tuning response systems to efficiently preempt the FS breaches; (iii) building a long-term nutrient and toxicant surveillance network based on validated measurement systems functioning in real time; (iv) focusing on crisp, clear, and correct communication that resonates among all the stakeholders; and (v) developing inter-disciplinary human resources to meet ever-increasing FS challenges. Important determinants of FSS include: (i) strengthening international dialogue for refining regulatory reforms and addressing emerging risks; (ii) developing innovative and strategic action points for intervention {in addition to Hazard Analysis and Critical Control Points (HACCP) procedures]; and (iii) introducing additional science-based tools such as metrology-based measurement systems.


Author(s):  
JAMES E. BROWN ◽  
CARMINE M. BERTONE ◽  
RICHARD W. OBERMAYER
Keyword(s):  

Author(s):  
Jeffrey W. McCandless ◽  
Robert S. McCann ◽  
Bruce R. Hilty
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document