Research on the Rice Leaf Morphological Formation and its Visualization

2011 ◽  
Vol 201-203 ◽  
pp. 2504-2508
Author(s):  
Hong Wei Liu ◽  
Yan Yang Liang ◽  
Hui Zhang

This paper firstly summarizes the morphological characteristics of rice leaf through observation of the rice leaf growth process. And then the mathematical model of the rice leaf growing is established based on experimental data. In this model, the vectorization of rice leaf morphology and growth process is realized by only several explicit biological parameters. The visualization of the rice leaf growth process is realized in computer by technique of computer graphics and the combination of VC++ and OpenGL. The simulation results show that the proposed model can simulate the growth process of the rice leaf very well on the computer easily with less parameter.

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Yuanyuan Sun ◽  
Jiali Gao ◽  
Ke Wang ◽  
Zhangquan Shen ◽  
Lisu Chen

Machine vision technology enables the continuous and nondestructive monitoring of leaf responses to different nutrient supplies and thereby contributes to the improvement of diagnostic effects. In this study, we analysed the temporal dynamics of rice leaf morphology and colour under different nitrogen (N), phosphorus (P), and potassium (K) treatments by continuous imaging and further evaluated the effectiveness of dynamic characteristics for identification. The top four leaves (the 1st incomplete leaf and the top three fully expanded leaves) were scanned every three days, and all images were processed in MATLAB to extract the morphological and colour characteristics for dynamic analysis. Subsequently, the mean impact value was applied to evaluate the effectiveness of dynamic indices for identification. According to the results, higher nutrient supply resulted in a faster leaf extension rate and a lower developing rate of chlorosis, and the influence of N deficiency on leaf growth was the greatest, followed by P deficiency and then K deficiency. Furthermore, the optimal indices for identification were mainly calculated from morphological characteristics of the 1st incomplete leaf and colour characteristics of the 3rd fully expanded leaf. Overall, dynamic analysis contributes not only to the exploration of the plant growth mechanism but also to the improvement of diagnostics.


Author(s):  
Adam Barylski ◽  
Mariusz Deja

Silicon wafers are the most widely used substrates for fabricating integrated circuits. A sequence of processes is needed to turn a silicon ingot into silicon wafers. One of the processes is flattening by lapping or by grinding to achieve a high degree of flatness and parallelism of the wafer [1, 2, 3]. Lapping can effectively remove or reduce the waviness induced by preceding operations [2, 4]. The main aim of this paper is to compare the simulation results with lapping experimental data obtained from the Polish producer of silicon wafers, the company Cemat Silicon from Warsaw (www.cematsil.com). Proposed model is going to be implemented by this company for the tool wear prediction. Proposed model can be applied for lapping or grinding with single or double-disc lapping kinematics [5, 6, 7]. Geometrical and kinematical relations with the simulations are presented in the work. Generated results for given workpiece diameter and for different kinematical parameters are studied using models programmed in the Matlab environment.


2021 ◽  
Vol 316 ◽  
pp. 661-666
Author(s):  
Nataliya V. Mokrova

Current cobalt processing practices are described. This article discusses the advantages of the group argument accounting method for mathematical modeling of the leaching process of cobalt solutions. Identification of the mathematical model of the cascade of reactors of cobalt-producing is presented. Group method of data handling is allowing: to eliminate the need to calculate quantities of chemical kinetics; to get the opportunity to take into account the results of mixed experiments; to exclude the influence of random interference on the simulation results. The proposed model confirms the capabilities of the group method of data handling for describing multistage processes.


2021 ◽  
Vol 2094 (5) ◽  
pp. 052007
Author(s):  
P V Belolipetskii ◽  
V S Potylitsyn ◽  
G Y Shajdurov ◽  
V V Romanov

Abstract The article discusses a numerical model for assessing the depth for the passive method of induced polarization based on previously obtained experimental data at the Samson field (Republic of Khakassia). The model is based on the mathematical model of Komarov, who derived equations for the anomalous polarizability of a sphere observed on the Earth’s day surface, the proposed model for estimating the depth of the anomaly depends on the size of the proposed field and the induced polarization coefficient observed on the surface. In the course of the numerical assessment, it was shown that there is a convergence of data from field observations, exploration drilling and mathematical modeling.


Author(s):  
Assaad Al Sahlani ◽  
Kelvin Randhir ◽  
Nesrin Ozalp ◽  
James Klausner

Abstract Concentrated solar thermochemical storage in the form of a zero-emission fuel is a promising option to produce long-duration energy storage. The production of solar fuel can occur within a cylindrical cavity chemical reactor that captures concentrated solar radiation from a solar field. A heat transfer model of a tubular plug-flow reactor is presented. Experimental data from a fixed bed tubular reactor are used for model comparison. The system consists of an externally heated tube with counter-current flowing gas and moving solid particles as the heated media. The proposed model simulates the dynamic behavior of temperature profiles of the tube wall, gas, and particles under various gas flow rates and residence times. The heat transfer between gas-wall, solid particle-wall, gas-solid particle, are numerically studied. The model is compared with experiments using a 4 kW furnace with a 150 mm heating zone surrounding a horizontal alumina tube (reactor) with 50.8 mm OD and a thickness of 3.175 mm. Solid fixed particles of magnesium manganese oxide (MgMn2O4) with the size of 1 mm are packed within the length of 250 mm at the center of the tube length. Simulation results are assessed with respect to fixed bed experimental data for four different gas flow rates, namely 5, 10, 15, 20 standard liters per minute of air, and furnace temperatures in the range of 200 to 1200 °C. The simulation results showed good agreement with maximum steady state error that is less than 6% of those obtained from the experiments among all runs. The proposed model can be implemented as a low-order physical model for the control of temperature inside plug-flow reactors for thermochemical energy storage (TCES) applications.


2018 ◽  
Vol 26 (6) ◽  
pp. 859-873 ◽  
Author(s):  
H. Thomas Banks ◽  
Sergey I. Kabanikhin ◽  
Olga I. Krivorotko ◽  
Darya V. Yermolenko

Abstract In this paper a problem of specifying HIV-infection parameters and immune response using additional measurements of the concentrations of the T-lymphocytes, the free virus and the immune effectors at fixed times for a mathematical model of HIV dynamics is investigated numerically. The problem of the parameter specifying of the mathematical model (an inverse problem) is reduced to a problem of minimizing an objective function describing the deviation of the simulation results from the experimental data. A genetic algorithm for solving the least squares function minimization problem is implemented and investigated. The results of a numerical solution of the inverse problem are analyzed.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1439
Author(s):  
Qingfeng Feng ◽  
Hao-Che Ho ◽  
Teng Man ◽  
Jiaming Wen ◽  
Yuxin Jie ◽  
...  

Suffusion constitutes a major threat to the foundation of a dam, and the likelihood of suffusion is always determined by the internal stability of soils. It has been verified that internal stability is closely related to the grain size distribution (GSD) of soils. In this study, a numerical model is developed to simulate the suffusion process. The model takes the combined effects of GSD and porosity (n) into account, as well as Wilcock and Crowe’s theory, which is also adopted to quantify the inception and transport of soils. This proposed model is validated with the experimental data and shows satisfactory performance in simulating the process of suffusion. By analyzing the simulation results of the model, the mechanism is disclosed on how soils with specific GSD behaving internally unstable. Moreover, the internal stability of soils can be evaluated through the model. Results show that it is able to distinguish the internal stability of 30 runs out of 36, indicating a 83.33% of accuracy, which is higher than the traditional GSD-based approaches.


2016 ◽  
Vol 12 (2) ◽  
pp. 189-194 ◽  
Author(s):  
Zhi-gang Huang ◽  
Yun-xuan Weng ◽  
Nan Fu ◽  
Zong-qiang Fu ◽  
Dong Li ◽  
...  

Abstract Mathematical models including mass and energy conservation were developed in order to predict the outlet particles temperature and moisture. As the inlet air temperature increased, the outlet particles temperature increased as well and the outlet particles moisture decreased quickly. The outlet particles temperature and moisture changed a little as a function of the speed of rotation at the low inlet air temperature, while the outlet particles temperature and moisture increased very apparently with the speed of rotation increased at the high inlet air temperature. The error of the simulation results compared to the experimental data showed good accuracy for particles temperature and moisture content. The mathematical model performs well to predict the outlet particles temperature and moisture content.


2011 ◽  
Vol 130-134 ◽  
pp. 3603-3606
Author(s):  
Fu Sheng Yan ◽  
Wei Jun Zhang ◽  
Ru Quan Liang

This investigation deals with the study on the processes involved in the phenomenon about turbulence modification in dilute gas-particle turbulent flows. The proposed model, along with other selected turbulence modification models from the literature, is used to simulate a particle-laden vertical pipe flow. The simulation results show that the new model provides improved predictions of the experimental data.


Author(s):  
V. Mogila ◽  
M. Kovtanets ◽  
M. Morneva

The Department of Railwayand Road Transport, lift and care system of Volodymyr Dahl East Ukrainian National University, an energy-saving cooling system for diesel locomotives using phase transitions of the coolant has been developed. The proposed cooling system allows to maintain constant optimal temperatures of cooling objects at ambient temperatures ± 40 ºC and in any mode of operation of the diesel engine. For thermal calculation of the radiator section operating in the mode of the steam condenser, the mathematical model of process of heat transfer from steam to walls of a flat tube at condensation is developed that considers geometrical features of section of a tube. The adequacy of this mathematical model is verified by comparing the simulation results with the obtained experimental data. During the tests, the outlet water temperature, inlet and outlet air temperature, and air pressure in front of and behind the radiator were measured. Having the values of wall temperature, steam temperature and condensate, knowing the value of steam consumption and the experimental heat transfer coefficient, it becomes possible to verify the adequacy of the mathematical model by comparing the simulation results with the obtained experimental data. Schemes of bench equipment, test methods, experimental planning and basic calculation dependences required for testing serial radiator sections of a locomotive in the standard mode of operation and in the mode of steam condensers are presented.


Sign in / Sign up

Export Citation Format

Share Document