scholarly journals Corrosion inhibition of a composite inhibitor containing imidazoline on carbon steel in simulated reverse osmosis product water of seawater

2016 ◽  
Vol 5 (4) ◽  
pp. 325-332
Author(s):  
S.H. Liu ◽  
◽  
Y.N. Wang ◽  
B.X. Yuan ◽  
W.T. Dong ◽  
...  
2015 ◽  
Vol 62 (3) ◽  
pp. 176-181
Author(s):  
Min Zhang ◽  
Hong-Hua Ge ◽  
Xue-Juan Wang ◽  
Xin-Jing Meng ◽  
Yu-Zeng Zhao ◽  
...  

Purpose – The purpose of this study was to explore the differences in the corrosion behavior of carbon steel in simulated reverse osmosis (RO) product water, and in seawater. Design/methodology/approach – The wire beam electrodes (WBE) and coupons made from Type Q235 carbon steel and were immersed in simulated reverse osmosis product water, and in seawater, for fifteen days. The corrosion potential distribution on the WBE at different times was measured. The corrosion rates of the carbon steel in different solutions were obtained using weight loss determinations. The different corrosion behavior of carbon steel in the two kinds of solution was analyzed. Findings – The results showed that the average corrosion potential, micro-cathode potential and micro-anode potential of the WBE decreased with time in simulated RO product water. During this period, the maximum potential difference between micro-cathodes and micro-anodes on the WBE surface also decreased with time. The potential difference was more than 260mV at the beginning of the test and was still greater than 110mV after fifteen days of immersion. The positions of cathodes and anodes remained basically unchanged and corrosion took place on the localized anode during the experiments. The average corrosion potential, micro-cathode potential and micro-anode potential on the WBE surface also decreased with time in the simulated seawater. However, the maximum potential difference between micro-cathode and micro-anode on the WBE surface in the simulated seawater was much smaller than was the case in simulated RO product water. It was 37.8 mV at the beginning of the test and was no more than 12mV after two days immersion. The positions of cathode region and anode kept changing, leading to overall uniform corrosion. The actual corrosion rate on the corroded anode region in simulated RO product water was greater than was the case in simulated seawater. Originality/value – The corrosion behavior differences of carbon steel between in RO product water and in seawater were revealed by using wire beam electrodes (WBE). From the micro point of view, it explained the reason why the actual corrosion rate of carbon steel in RO product water was greater than that in sea water. The results can be helpful to explore future corrosion control methods for carbon steel in RO product water.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Irene Carrillo ◽  
Benjamín Valdez ◽  
Roumen Zlatev ◽  
Margarita Stoycheva ◽  
Michael Schorr ◽  
...  

The purpose of this paper is to evaluate the electrochemical behaviour of corrosion inhibition of the copper-carbon steel galvanic couple (Cu-CS), exposed to reverse osmosis water (RO) used for rinsing of heat exchangers for heavy duty machinery, during manufacture. Molybdate and nitrite salts were utilized to evaluate the inhibition behaviour under galvanic couple conditions. Cu-CS couple was used as working electrodes to measure open circuit potential (OCP), potentiodynamic polarization (PP), and electrochemical impedance spectroscopy (EIS). The surface conditions were characterized by scanning electron microscopy (SEM) and electron dispersive X-ray spectroscopy (EDS). The most effective concentration ratio between molybdate and nitrite corrosion inhibitors was determined. The morphological study indicated molybdate deposition on the anodic sites of the galvanic couple. The design of molybdate-based corrosion inhibitor developed in the present work should be applied to control galvanic corrosion of the Cu-CS couple during cleaning in the manufacture of heat exchangers.


2012 ◽  
Vol 28 (05) ◽  
pp. 1153-1162 ◽  
Author(s):  
HU Jia-Yuan ◽  
◽  
CAO Shun-An ◽  
XIE Jian-Li ◽  

Author(s):  
Somasundaram Gowri ◽  
Jeganathan Sathiyabama ◽  
Susai Rajendran ◽  
Rajendran M. Joany ◽  
Jeyaparkash Jeyasundari ◽  
...  

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 135
Author(s):  
Aurelia Visa ◽  
Nicoleta Plesu ◽  
Bianca Maranescu ◽  
Gheorghe Ilia ◽  
Ana Borota ◽  
...  

The inhibition effect of N,N′-phosphonomethylglycine (PMG) and vinyl phosphonic acid (VPA) on the 3% NaCl acidic solution corrosion of carbon steel iron was studied at different immersion times by potentiodynamic polarization, electrochemical impedance spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and computational methods. It is found from the polarization studies that PMG and VPA behave as mixed-type inhibitors in NaCl. Values of charge transfer resistance (Rct) and double layer capacitance (Cdl) in the absence and presence of inhibitors are determined. The PMG and VPA inhibitors were capable of inhibiting the corrosion process up to ≈91% and ≈85%, respectively. In the presence of PMG, the synergic effect of chlorine ions was observed. Density functional theory (DFT) was engaged to establish the adsorption site of PMG, VPA, and their deprotonated states. For studied compounds, the resulted values of ELUMO, EHOMO, energy gap (∆E), dipole moment (μ), electronic hardness (η), global softness (σ), electrophilic index (ω), and the electronic potential map are in concordance with the experimental data results regarding their corrosion inhibition behavior and adsorption on the metal surface.


Sign in / Sign up

Export Citation Format

Share Document