scholarly journals Intensity of Electromagnetic Wave into Layers with Fluctuations of Dielectric Permittivity

2021 ◽  
Vol 13 (1) ◽  
pp. 3-12
Author(s):  
Gennady I. Grigor’ev ◽  
◽  
Tatiana M. Zaboronkova ◽  
Lev P. Kogan ◽  
◽  
...  

The study is made of the intensity of a plane electromagnetic wave propagating into the layer with random discrete irregularities of the dielectric permittivity. The mean intensity of scattered field as a function of the parameters of random irregularities of rectangular and triangular forms is analyzed. It is shown that the deviation of the average intensity from the unperturbed value increases both the average amplitude and its standard of fluctuations. It is found that the amplitude of the intensity oscillations for a layer with irregularities of the rectangular shape is significantly greater than for fluctuations with the triangular profile.

2021 ◽  
Vol 26 (4) ◽  
pp. 350-357
Author(s):  
M. E. Kaliberda ◽  
◽  
L. M. Lytvynenko ◽  
S. A. Pogarsky ◽  
◽  
...  

Purpose: The problem of a plane electromagnetic wave diffraction by an annular slot in the perfectly conducting zero thickness plane is considered. As a dual problem, the problem of diffraction by a perfectly conducting zero thickness ring is also considered. The paper aims at developing the operator method for the axially symmetric structures placed in free space. Design/methodology/approach: The problem is considered in the spectral domain. The scattered field is expressed in terms of unknown Fourier amplitudes (spectral functions). The annular slot is given as a unity of two simple discontinuities, namely of a disk and a circular hole in the plane, which interact with each other. The Fourier amplitude of the scattered field is sought as a sum of two amplitudes, the Fourier amplitude of the field of currents on the disk and Fourier amplitude of the field of currents on the perfectly conducting plane with circular hole. The operator equations are written for these amplitudes, which take into account the electromagnetic coupling of the disk and the hole in the plane. The equations use the reflection operators of a single isolated disk and a single hole in the plane. They are supposed to be known and can be obtained for example by the method of moments.The reflection operators can have singularities. After transformations, the equations are obtained, which are equivalent to the Fredholm integral equations of second kind and they can be solved numerically. Findings: The operator equations relative to the Fourier amplitudes of the field scattered by the discussed structure are obtained. The far zone scattered field for an annular slot and a ring for different values of parameters are studied. Conclusions: The rigorous solution of the problem of the electromagnetic wave diffraction by an annular slot in the plane and by a circular ring is obtained. The problem is reduced to the Fredholm integral equations of second kind. The far field distribution for different parameters is studied. The developed approach is an effective instrument for a number of problems of antenna technique to be solved. Key words: circular hole; disk; annular slot; ring; operator method; diffraction


1990 ◽  
Vol 68 (4-5) ◽  
pp. 376-384 ◽  
Author(s):  
M. F. R. Cooray ◽  
I. R. Ciric ◽  
B. P. Sinha

An exact solution to the problem of scattering of a plane electromagnetic wave by two dielectric prolate spheroids with parallel major axes is obtained by expanding the incident, scattered, and transmitted electric and magnetic fields in terms of an appropriate set of vector spheroidal eigenfunctions. The incident wave is considered to be a monochromatic, uniform plane electromagnetic wave of arbitrary polarization and angle of incidence. The boundary conditions are imposed by expressing the electromagnetic field scattered by one spheroid in terms of the spheroidal coordinates attached to the other, using the translational addition theorems for vector spheroidal wave functions. The column matrix of the total transmitted and scattered field-expansion coefficients is equal to the product of a square matrix, which is independent of the direction and polarization of the incident wave, and the column matrix of the known incident field-expansion coefficients. The solution of the associated set of algebraic equations gives the unknown transmitted and scattered field-expansion coefficients. Even though the problem is formulated in general, the numerical results are presented for the bistatic and backscattering cross sections of two lossless prolate spheroids with various axial ratios and center-to-center distances.


1964 ◽  
Vol 42 (11) ◽  
pp. 2121-2128 ◽  
Author(s):  
P. L. E. Uslenghi

The scattered field produced by a plane electromagnetic wave incident on an infinitely long imperfectly conducting cylinder coated with a layer of material with complex index of refraction is considered. The geometric optics and the creeping wave contributions to the backscattered field are obtained, for normal incidence and small wavelengths.


Sign in / Sign up

Export Citation Format

Share Document