Ultimate Strength of Container Ship Bilge Panels Subjected to Axial Compression Combined with Bending and Lateral Pressure

2020 ◽  
Vol 30 (3) ◽  
pp. 327-339
Author(s):  
Jinju Cui ◽  
Deyu Wang
2021 ◽  
Author(s):  
Qiang Zhong ◽  
De-yu Wang

Abstract Dynamic capacity is totally different from quasi-static capacity of ship structural components, although most ultimate strength analyses at present by researchers are performed under quasi-static conditions. To investigate the dynamic ultimate strength characteristics, the dynamic ultimate strength analyses of stiffened plates subjected to impact load were studied based on a 3-D nonlinear explicit finite element method (FEM) in this paper. The impact load in the present work is characterized as a half-sine function. A series of nonlinear finite element analyses are carried out using Budiansky-Roth (B-R) criterion. The influence of impact durations, model ranges, boundary conditions, initial imperfections and impact loads on the dynamic ultimate strength of stiffened plates are discussed. In addition, the ultimate strength of stiffened plates under the in-plane impact combined with lateral pressure was also calculated, which shows lateral pressure has a negligible effect on the dynamic ultimate strength of stiffened plates subjected to the impact load with short durations. Other important conclusions can be obtained from this paper, which are useful insights for the development of ultimate strength theory of ship structures and lay a good foundation for the study of dynamic ultimate strength in the future.


2001 ◽  
Vol 45 (02) ◽  
pp. 111-132 ◽  
Author(s):  
Jeom Kee Paik ◽  
Owen F. Hughes ◽  
Alaa E. Mansour

The aim of this paper is to develop an advanced ultimate strength formulation for ship hulls under vertical bending moment. Since the overall failure of a ship hull is normally governed by buckling and plastic collapse of the deck, bottom, and sometimes the side shell stiffened panels, it is of crucial importance to accurately calculate the ultimate strength of stiffened panels in deck, bottom and side shell for more advanced ultimate strength analyses. In this regard, the developed formulation is designed to be more sophisticated than previous simplified theoretical methods for calculating the ultimate strength of stiffened panels under combined axial load, in-plane bending and lateral pressure. Fabrication-related initial imperfections (initial deflections and residual stresses) and potential structural damage related to corrosion, collision, or grounding are included in the panel ultimate strength calculations as parameters of influence. All possible collapse modes involved in collapse of stiffened panels, including overall buckling collapse, column or beam-column type collapse (plate or stiffener induced collapse), tripping of stiffeners and local buckling of stiffener web, are considered. As illustrative examples, the paper investigates and discusses the sensitivity of parameters such as lateral pressure, fabrication-related initial imperfections, corrosion, collision and grounding damage on the ultimate strength of a typical Cape size bulk carrier hull under vertical bending.


1997 ◽  
Vol 41 (04) ◽  
pp. 301-317
Author(s):  
Jeom K. Paik ◽  
Anil K. Thayamballi ◽  
Min S. Chun

The objectives of the present study are to obtain experimental data on collapse strength of steel corrugated bulkhead models and also to develop a simple analytical formulation for ultimate strength useful in the design of corrugated bulkheads under static lateral pressure. Collapse tests on nine mild steel corrugated bulkhead models having five bays of corrugations are carried out, varying the corrugation angle, the plate thickness and the type of loading (axial compression and/or lateral pressure). Using the test data, the characteristics of the collapse mechanism for corrugated bulkheads are investigated. For purposes of rapid first cut estimates of strength, a new and simple analytical formulation for predicting the ultimate strength of corrugated bulkheads under hydrostatic pressure is derived based on an assumed stress distribution over the corrugation cross section at the ultimate limit state. The modeling error associated with the new formulation is established by comparing its predictions with the experimental results. The development of ultimate strength based design guidelines and the effect of design parameters such as the corrugation angle on ultimate strength of a corrugated bulkhead are then discussed. All experimental information and strength data are tabulated, which is a benefit in itself.


2001 ◽  
Vol 14 (04) ◽  
pp. 190-195 ◽  
Author(s):  
E. L. Egger ◽  
G. D. Herndon

This studies the effects of contouring of acrylic column when placed in axial compression. Six different angles were studied, 0°, 30°, 45°, 60°, 90° and a 90° with a 2.0 mm connecting bar. Each column was then placed under axial compression using a biomechanical testing machine. As the angle of the contour increased there was a significant decrease in the ultimate stiffness and ultimate strength of the columns. However, the amount of force required to cause catastrophic failure in any of the group was still high (stiffness 300 N/mm ± 70, ultimate strength 1032 N ± 139) which may not be reached in a physiological setting. When using a severe angulation of the column the using of a connecting bar will significantly increase both stiffness and strength of the acrylic.


Sign in / Sign up

Export Citation Format

Share Document