Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 596
Author(s):  
Yasuhiro Dosho

To improve the application of low-quality aggregates in structural concrete, this study investigated the effect of multi-purpose mineral admixtures, such as fly ash and ground granulated blast-furnace slag, on the performance of concrete. Accordingly, the primary performance of low-quality recycled aggregate concrete could be improved by varying the replacement ratio of the recycled aggregate and using appropriate mineral admixtures such as fly ash and ground granulated blast-furnace slag. The results show the potential for the use of low-quality aggregate in structural concrete.


2016 ◽  
Vol 847 ◽  
pp. 553-558 ◽  
Author(s):  
Marc Antonio Liotta ◽  
Marco Viviani ◽  
Carlotta Rodriquez

A large number of tests has been carried out in the last 15 years all around the world to study the possibility to use recycled concrete aggregates (RCA) to produce structural concrete.Earlier tests indicated that RCA concrete had lower properties in comparison to ordinary concrete, such as lower elastic modulus, a more brittle post-elastic behavior, lower workability, higher shrinkage and creep.Most of these issues have been addressed to the content of cement mortar remaining in adhesion to the aggregate after the recycling processes and that cannot be totally eliminated without high economic and ecological costs. This cement mortar which has undergone the crushing process creates zones of weakness in the RCA, causes higher water absorption, higher concrete porosity and causes the decay of the aforementioned properties.More recent tests prove that Recycled Concrete shows this peculiar problems only with a percentage of substitution of standard aggregates with RCA higher than 30%. Under this percentage recycled aggregate concrete (RAC) can be considered as a standard concrete, on condition that an appropriate mix design is performed.


2011 ◽  
Vol 261-263 ◽  
pp. 446-449 ◽  
Author(s):  
Ping Hua Zhu ◽  
Xin Jie Wang ◽  
Jin Cai Feng

The influence of synchronous use of coarse and fine recycled concrete aggregates on durable performance of recycled aggregate concrete (RAC) in air environment were determined. In this study, three series of concrete mixtures were prepared, in which the coarse recycled aggregate was used as 0%, 30%, 60% and 90% replacements of coarse natural aggregate and fine recycled aggregate as 0%, 10%, 20%, and 30% replacements of fine natural aggregate. Meanwhile, fly ash and slag were used as 15%, 25%, 35% and 45% replacements of cement, respectively. The carbonation depths, compressive cube strength, workability of RACs were tested. The experimental results showed that RAC with synchronous use of coarse and fine recycled concrete aggregates had satisfactory durable performance. When RAC was used as structural concrete in air environment, the optimum synchronous replacements are 60% for coarse recycled aggregate and 20% for fine recycled aggregate.


2014 ◽  
Vol 665 ◽  
pp. 163-166
Author(s):  
Ping Hua Zhu ◽  
Fei Fei Xie ◽  
Qun Xia

In order to explore the possibility of using repeatedly recycling waste concrete as aggregate to produce structural concrete, experimental research was carried out on the structural properties of three kinds of recycled fine aggregate (RFA) with two-regeneration cycles, two single and one mixed. The results showed that the quality of all RFAs meet the needs of Grade Ⅲ in GB/T25177-2010 and Level L in JISA 5023-2000. The degree of performance degradation is observed to enhance with increasing recycling cycle when taking the same preparation process of recycled aggregate.


2013 ◽  
Vol 423-426 ◽  
pp. 1010-1013 ◽  
Author(s):  
Wee Kang Choong ◽  
Lau Teck Leong ◽  
Choon Seng Sin ◽  
Abdullahi Ali Mohamed

Recycled aggregate differs from primary aggregate in that it constitutes of two types of materials: the primary aggregate and the attaching cement mortar. This study was conducted in order to investigate the effects on water-cement ratio for concrete cast with recycled aggregates derived from different origins (hollow blocks & structural concrete elements) and different mixed proportions of recycled aggregate contents. The outcomes of test indicate that higher water cement ratios are required for concrete cast with recycled aggregates as compare to those cast with primary aggregates. Also there appear no obvious relationships or consistencies that can be drawn among types of recycled aggregate.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Valeria Corinaldesi

An investigation of mechanical behaviour and elastic properties of recycled aggregate concrete (RAC) is presented. RACs were prepared by using a coarse aggregate fraction made of recycled concrete coming from a recycling plant in which rubble from concrete structure demolition is collected and suitably treated. Several concrete mixtures were prepared by using either the only virgin aggregates (as reference) or 30% coarse recycled aggregate replacing gravel and by using two different kinds of cement. Different water-to-cement ratios were adopted ranging from 0.40 to 0.60. Concrete workability was always in the range 190–200 mm. Concrete compressive strength, elastic modulus, and drying shrinkage were evaluated. Results obtained showed that structural concrete up to C32/40 strength class can be manufactured with RAC. Moreover, results obtained from experimentation were discussed in order to obtain useful information for RAC structure design, particularly in terms of elastic modulus and drying shrinkage prediction.


Sign in / Sign up

Export Citation Format

Share Document