scholarly journals A protocol for 3D culture model adaptable for cartilage tissue engineering on hyaluronic acid-based substrate

2019 ◽  
Author(s):  
Boting Li
Author(s):  
Minwook Kim ◽  
Jason A. Burdick ◽  
Robert L. Mauck

Mesenchymal stem cells (MSCs) are an attractive cell type for cartilage tissue engineering in that they can undergo chondrogenesis in a variety of 3D contexts [1]. Focused efforts in MSC-based cartilage tissue engineering have recently culminated in the formation of biologic materials possessing biochemical and functional mechanical properties that match that of the native tissue [2]. These approaches generally involve the continuous or intermittent application of pro-chondrogenic growth factors during in vitro culture. For example, in one recent study, we showed robust construct maturation in MSC-seeded hyaluronic acid (HA) hydrogels transiently exposed to high levels of TGF-β3 [3]. Despite the promise of this approach, MSCs are a multipotent cell type and retain a predilection towards hypertrophic phenotypic conversion (i.e., bone formation) when removed from a pro-chondrogenic environment (e.g., in vivo implantation). Indeed, even in a chondrogenic environment, many MSC-based cultures express pre-hypertrophic markers, including type X collagen, MMP13, and alkaline phosphatase [4]. To address this issue, recent studies have investigated co-culture of human articular chondrocytes and MSCs in both pellet and hydrogel environments. Chondrocytes appear to enhance the initial efficiency of MSC chondrogenic conversion, as well as limit hypertrophic changes in some instances (potentially via secretion of PTHrP and/or other factors) [5–7]. While these findings are intriguing, articular cartilage has a unique depth-dependent morphology including zonal differences in chondrocyte identity. Ng et al. showed that zonal chondrocytes seeded in a bi-layered agarose hydrogel construct can recreate depth-dependent cellular and mechanical heterogeneity, suggesting that these identities are retained with transfer to 3D culture systems [8]. Further, Cheng et al. showed that differences in matrix accumulation and hypertrophy in zonal chondrocytes was controlled by bone morphogenic protein [9]. To determine whether differences in zonal chondrocyte identity influences MSC fate decisions, we evaluated functional properties and phenotypic stability in photocrosslinked hyaluronic acid (HA) hydrogels using distinct, zonal chondrocyte cell fractions co-cultured with bone marrow derived MSCs.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 714
Author(s):  
Alvin Kai-Xing Lee ◽  
Yen-Hong Lin ◽  
Chun-Hao Tsai ◽  
Wan-Ting Chang ◽  
Tsung-Li Lin ◽  
...  

Cartilage injury is the main cause of disability in the United States, and it has been projected that cartilage injury caused by osteoarthritis will affect 30% of the entire United States population by the year 2030. In this study, we modified hyaluronic acid (HA) with γ-poly(glutamic) acid (γ-PGA), both of which are common biomaterials used in cartilage engineering, in an attempt to evaluate them for their potential in promoting cartilage regeneration. As seen from the results, γ-PGA-GMA and HA, with glycidyl methacrylate (GMA) as the photo-crosslinker, could be successfully fabricated while retaining the structural characteristics of γ-PGA and HA. In addition, the storage moduli and loss moduli of the hydrogels were consistent throughout the curing durations. However, it was noted that the modification enhanced the mechanical properties, the swelling equilibrium rate, and cellular proliferation, and significantly improved secretion of cartilage regeneration-related proteins such as glycosaminoglycan (GAG) and type II collagen (Col II). The cartilage tissue proof with Alcian blue further demonstrated that the modification of γ-PGA with HA exhibited suitability for cartilage tissue regeneration and displayed potential for future cartilage tissue engineering applications. This study built on the previous works involving HA and further showed that there are unlimited ways to modify various biomaterials in order to further bring cartilage tissue engineering to the next level.


2018 ◽  
Vol 9 (28) ◽  
pp. 3959-3960 ◽  
Author(s):  
Feng Yu ◽  
Xiaodong Cao ◽  
Yuli Li ◽  
Lei Zeng ◽  
Bo Yuan ◽  
...  

Correction for ‘An injectable hyaluronic acid/PEG hydrogel for cartilage tissue engineering formed by integrating enzymatic crosslinking and Diels–Alder “click chemistry”’ by Feng Yu et al., Polym. Chem., 2014, 5, 1082–1090.


Biomaterials ◽  
2018 ◽  
Vol 162 ◽  
pp. 1-21 ◽  
Author(s):  
P. Yeung ◽  
W. Zhang ◽  
X.N. Wang ◽  
C.H. Yan ◽  
B.P. Chan

Biomaterials ◽  
2010 ◽  
Vol 31 (11) ◽  
pp. 3103-3113 ◽  
Author(s):  
R. Jin ◽  
L.S. Moreira Teixeira ◽  
P.J. Dijkstra ◽  
C.A. van Blitterswijk ◽  
M. Karperien ◽  
...  

2014 ◽  
Vol 10 (1) ◽  
pp. 214-223 ◽  
Author(s):  
Peter A. Levett ◽  
Ferry P.W. Melchels ◽  
Karsten Schrobback ◽  
Dietmar W. Hutmacher ◽  
Jos Malda ◽  
...  

2011 ◽  
Vol 17 (7) ◽  
pp. 717-730 ◽  
Author(s):  
Clara R. Correia ◽  
Liliana S. Moreira-Teixeira ◽  
Lorenzo Moroni ◽  
Rui L. Reis ◽  
Clemens A. van Blitterswijk ◽  
...  

2011 ◽  
pp. 110308075242061
Author(s):  
Clara Correia ◽  
Liliana S MoreiraTeixeira ◽  
Lorenzo Moroni ◽  
Rui L. Reis ◽  
Clemens van Blitterswijk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document