hyaluronic acid hydrogel
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 109)

H-INDEX

40
(FIVE YEARS 10)

2022 ◽  
Vol 13 ◽  
pp. 100201
Author(s):  
Luyu Wang ◽  
Dan Zhang ◽  
Yikun Ren ◽  
Shen Guo ◽  
Jinrui Li ◽  
...  

Author(s):  
Jin Li ◽  
Zezhou Zheng ◽  
Ming Du ◽  
Jinchun Chen ◽  
Hui Zhu ◽  
...  

Naturally occurring compounds isolated from the microalga Euglena gracilis, such as polysaccharide paramylon, exhibit antimicrobial, anti-viral, antitumor, and anti-inflammatory activities. Whether live E. gracilis cells and its aqueous extract accelerate burn wound healing remains to be investigated. In this study, live E. gracilis cells and its aqueous extract were mixed with chitosan-hyaluronic acid hydrogel (CS/HA) to form cell + CS/HA and extract + CS/HA, which were then smeared onto the deeply burned skin of mice. The efficacy of these mixtures in accelerating wound healing was assessed through wound size reduction measurement, histological and immunofluorescence analyses, and serum pro-inflammatory cytokine level (INF-γ, IL-1β, and IL-6) determination. The live E. gracilis cells and its aqueous extract were found to facilitate wound healing by enhancing re-epithelization and reducing fibroplasia without stimulating excessive inflammatory response. In conclusion, live E. gracilis cells and its aqueous extract can be potentially used to treat cutaneous wounds.


2021 ◽  
Vol 7 (1) ◽  
pp. 7
Author(s):  
Irene Abelenda Núñez ◽  
Ramón G. Rubio ◽  
Francisco Ortega ◽  
Eduardo Guzmán

Hydrogels (HG) are 3D networks of hydrophilic macromolecules linked by different “cross-linking points”, which have as a main advantage their capacity for the adsorption of large amounts of water without any apparent dissolution. This allows hydrogels to undergo reversible swelling–shrinking processes upon the modification of the environmental conditions (pH, ionic strength or temperature). This stimuli-responsiveness and their ability for entrapping in their interior different types of molecules makes hydrogels suitable platforms for drug delivery applications. Furthermore, HGs exhibit certain similarities to the extracellular tissue matrix and can be used as a support for cell proliferation and migration.


Author(s):  
Hong Chen ◽  
Pan Wu ◽  
Hong Xu ◽  
Changchun Wang

Vesicoureteral reflux (VUR) is one of the most common congenital anomalies in the kidney and the urinary tract. Endoscopic subureteral injection of a bulking agent has become popular in VUR treatment due to its high success rates, few complications, and a straightforward procedure. In this study, a novel magnetic bulking agent was prepared by embedding Fe3O4 magnetic nanoparticles in cross-linked agarose microspheres with diameters of 80–250 μm and dispersing the magnetic microspheres in a hyaluronic acid hydrogel. The bulking agent has good biocompatibility and biosecurity validated by the tests of cytotoxicity, in vitro genotoxicity, animal irritation, skin sensitization, acute systemic toxicity, and pathological analysis after the injection of the bulking agent extract solution into healthy mice as well as injection of the bulking agent into VUR rabbits. The VUR rabbits were created by incising the roof of the intravesical ureter to enlarge the ureteral orifice. The success rate of the bulking agent in treating VUR rabbits using a subureteral transurethral injection technique was 67% (4/6) or 80% (4/5, excluding the unfinished rabbit), and no migrated particles were found in the organs of the rabbits. The transverse relaxation rate of the bulking agent was 104 mM−1s−1. After injection, the bulking agent was long-term trackable through magnetic resonance imaging that can help clinicians to inspect the VUR treatment effect. For the first time, this study demonstrates that the bulking agent with a long-term stable tracer is promising for endoscopic VUR treatment.


Sign in / Sign up

Export Citation Format

Share Document