cartilage injury
Recently Published Documents


TOTAL DOCUMENTS

303
(FIVE YEARS 104)

H-INDEX

31
(FIVE YEARS 5)

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Xin Wang ◽  
Dong Zhang ◽  
Fengqi Zhang ◽  
Lin Jin ◽  
Donglin Shi ◽  
...  

Abstract Background Talar cartilage injury is a kind of disease that causes long-term and chronic pain of ankle joint. Autologous osteochondral transplantation has been viewed as an alternative choice for treating these lesions, but donor-site morbidity has limited its application. This study aimed to analyze the efficacy of iliac bone autografting for Hepple V osteochondral lesions of the talus. Methods This retrospective study included 32 patients surgically treated for Hepple V osteochondral lesions of the talus from January 2015 to January 2020. All patients underwent open surgery. Ipsilateral iliac bone grafts were taken and filled with talar cartilage injury area. The improvement of postoperative ankle pain was evaluated by Visual Analogue Scale (VAS), and the improvement of ankle function was evaluated by the American Orthopaedic Foot & Ankle Society (AOFAS). During the postoperative follow-up, X-ray examination of the front and side of the ankle joint and CT of the ankle joint were performed to evaluate the bone cartilage healing in the graft area. Results Thirty-two patients (32 ankles) (100%) returned for clinical and radiologic follow-up at an average of 28 (range 24–36) months postoperatively. At 3 months postoperatively and at the last follow-up, the AOFAS scores were (80.4 ± 3.6) and (89.2 ± 6.4), respectively, which were significantly improved compared with the preoperative score (49.7 ± 8.1), and the difference was statistically significant (P < 0.05). The VAS scores were (2.1 ± 0.9) and (1.5 ± 0.8), respectively, which were significantly better than the preoperative score (6.2 ± 1.7), and the difference was statistically significant (P < 0.05). Re-examination of the front and side of the ankle joint X-rays and CT showed that the bone healing at the osteotomy of medial malleolus and osteochondral transplantation area. All patients had no pain at the donor site. No complications occurred in 32 patients at the last follow-up. Conclusions With iliac bone autografting for Hepple V osteochondral lesions of the talus can effectively relieve ankle joint pain and significantly improved ankle function. Level of evidence Level III, Retrospective series.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Yang Zhang ◽  
Wenyan Sun ◽  
Jia Chen

Joint injuries cause varying degrees of damage to joint cartilage. The purpose of this paper is to study the application of embedded smart wearable device monitoring in articular cartilage injury and rehabilitation training. This paper studies what an embedded system is and what a smart wearable device is and also introduces the rehabilitation training method of articular cartilage injury. We cited an embedded matching cost algorithm and an improved AD-Census. The joint cartilage damage and rehabilitation training are monitored. Finally, we introduced the types of smart wearable devices and different types of application fields. The results of this paper show that, after an articular cartilage injury, the joint function significantly recovers using the staged exercise rehabilitation training based on embedded smart wearable device monitoring. We concluded that, from 2013 to 2020, smart wearable devices are very promising in the medical field. In 2020, the value will reach 20 million US dollars.


2022 ◽  
Vol 12 (1) ◽  
pp. 19-27
Author(s):  
Xiaocheng Jiang ◽  
Yuxiang Ren ◽  
Xintao Zhang ◽  
Tian You ◽  
Shiyou Ren ◽  
...  

This study was aim to investigate the effect of type 1 collagen (Col I) bioactive scaffold on regeneration and repair of motor cartilage injury. Fifteen New Zealand rabbits were randomly divided into sham operation group (Sham group, only cartilage was exposed, no defect was made), model group Focal cortical dysplasias (FCD) group, cartilage defect model], and treatment group (Col I group, cartilage defect + Col I bioactive scaffold treatment). The cartilage tissue of each group was detected 16 weeks after the operation. Immunohistochemistry and Western Blot were adopted to detect the expression of cartilage related proteins in each group. The results showed that Col I bioactive scaffold could repair the gross morphology of cartilage defect, promote the regeneration and repair of chondrocytes in defect area, and reduce the mast cells in defect area. Western Blot detection of the expression of signal pathway marker proteins showed that expression of Wnt protein, β-catenin protein, and phosphofructokinase-1 (PFK-1) protein in the FCD group were significantly reduced than Sham group (P < 0.05), while the expression of phosphoenolpyruvate carboxykinase 1 (PEPCK1) protein was significantly increased (P < 0.05). Expression of Wnt protein, β-catenin protein, and PFK-1 protein in Col I group increased significantly versus FCD group (P < 0.05), while the expression of PEPCK1 protein significantly decreased (P < 0.05). In conclusion, Col I bioactive scaffolds could regenerate and repair cartilage defects, and the mechanism may be related to Wnt signaling pathway and glycolysis/gluconeogenesis pathway.


Author(s):  
Zongmian Song ◽  
Yusheng Li ◽  
Chunfeng Shang ◽  
Guowei Shang ◽  
Hongwei Kou ◽  
...  

When suffering from osteoarthritis (OA), articular cartilage homeostasis is out of balance and the living quality declines. The treatment of knee OA has always been an unsolved problem in the world. At present, symptomatic treatment is mainly adopted for OA. Drug therapy is mainly used to relieve pain symptoms, but often accompanied with adverse reactions; surgical treatment involves the problem of poor integration between the repaired or transplanted tissues and the natural cartilage, leading to the failure of repair. Biotherapy which aims to promote cartilage in situ regeneration and to restore endochondral homeostasis is expected to be an effective method for the prevention and treatment of OA. Disease-modifying osteoarthritis drugs (DMOADs) are intended for targeted treatment of OA. The DMOADs prevent excessive destruction of articular cartilage through anti-catabolism and stimulate tissue regeneration via excitoanabolic effects. Sprifermin (recombinant human FGF18, rhFGF18) is an effective DMOAD, which can not only promote the proliferation of articular chondrocyte and the synthesis of extracellular matrix, increase the thickness of cartilage in a dose-dependent manner, but also inhibit the activity of proteolytic enzymes and remarkedly slow down the degeneration of cartilage. This paper reviews the unique advantages of Sprifermin in repairing cartilage injury and improving cartilage homeostasis, aiming to provide an important strategy for the effective prevention and treatment of cartilage injury-related diseases.


Author(s):  
Muzhe Li ◽  
Han Yin ◽  
Zineng Yan ◽  
Huiyun Li ◽  
Jiang Wu ◽  
...  

2021 ◽  
Author(s):  
Mei-Li Mo ◽  
Jin-Mei Jiang ◽  
Xiao-Ping Long ◽  
Li-Hu Xie

Abstract Objectives Present study aimed to illustrate the role of miR-144-3p in RA. Methods N1511 chondrocytes were stimulated by IL-1β to mimic RA injury model in vitro. Rats were subjected to injection of type II collagen to establish an in vivo RA model and the arthritis index score was calculated. Cell viability was determined by CCK-8. The expression of cartilage extracellular matrix proteins (Collagen II and Aggrecan) and matrix metalloproteinases protein (MMP-13) were determined by qRT-PCR and western blots. Cell apoptosis was measured by Flow cytometry. ELISA was applied to test the secretion of pro-inflammatory cytokines (IL-1β and TNF-α). Tissue injury and apoptosis were detected by HE staining and TUNEL staining. Interaction of miR-144-3p and BMP2 was verified by dual luciferase assay. Results MiR-144-3p was dramatically increased in IL-1β induced N1511 cells. MiR-144-3p depletion elevated cell viability, suppressed apoptosis, pro-inflammatory cytokine releasing, and extracellular matrix loss in IL-1β induced N1511 cells. Moreover, miR-144-3p targeted BMP2 to modulate its expression negatively. Activation of PI3K/Akt signaling compromised inhibition of BMP2 induced aggravated N1511 cell injury with IL-1β stimulation. Inhibition of miR-144-3p alleviated cartilage injury and inflammatory in RA rats. Conclusion Collectively, miR-144-3p could aggravate chondrocytes injury inflammatory response in RA via BMP2/PI3K/Akt axis.


2021 ◽  
Vol 22 (23) ◽  
pp. 12969
Author(s):  
Iris Ribitsch ◽  
Andrea Bileck ◽  
Monika Egerbacher ◽  
Simone Gabner ◽  
Rupert L. Mayer ◽  
...  

Fetal cartilage fully regenerates following injury, while in adult mammals cartilage injury leads to osteoarthritis (OA). Thus, in this study, we compared the in vivo injury response of fetal and adult ovine articular cartilage histologically and proteomically to identify key factors of fetal regeneration. In addition, we compared the secretome of fetal ovine mesenchymal stem cells (MSCs) in vitro with injured fetal cartilage to identify potential MSC-derived therapeutic factors. Cartilage injury caused massive cellular changes in the synovial membrane, with macrophages dominating the fetal, and neutrophils the adult, synovial cellular infiltrate. Correspondingly, proteomics revealed differential regulation of pro- and anti-inflammatory mediators and growth-factors between adult and fetal joints. Neutrophil-related proteins and acute phase proteins were the two major upregulated protein groups in adult compared to fetal cartilage following injury. In contrast, several immunomodulating proteins and growth factors were expressed significantly higher in the fetus than the adult. Comparison of the in vitro MSCs proteome with the in vivo fetal regenerative signature revealed shared upregulation of 17 proteins, suggesting their therapeutic potential. Biomimicry of the fetal paracrine signature to reprogram macrophages and modulate inflammation could be an important future research direction for developing novel therapeutics.


Cartilage ◽  
2021 ◽  
pp. 194760352110572
Author(s):  
Katherine Wang ◽  
Q.Y. Esbensen ◽  
T.A. Karlsen ◽  
C.N. Eftang ◽  
C. Owesen ◽  
...  

Objective To analyze and compare cartilage samples from 3 groups of patients utilizing low-input RNA-sequencing. Design Cartilage biopsies were collected from patients in 3 groups ( n = 48): Cartilage lesion (CL) patients had at least ICRS grade 2, osteoarthritis (OA) samples were taken from patients undergoing knee replacement, and healthy cartilage (HC) was taken from ACL-reconstruction patients without CLs. RNA was isolated using an optimized protocol. RNA samples were assessed for quality and sequenced with a low-input SmartSeq2 protocol. Results RNA isolation yielded 48 samples with sufficient quality for sequencing. After quality control, 13 samples in the OA group, 9 in the HC group, and 9 in the CL group were included in the analysis. There was a high degree of co-clustering between the HC and CL groups with only 6 genes significantly up- or downregulated. OA and the combined HC/CL group clustered significantly separate from each other, yielding 659 significantly upregulated and 1,369 downregulated genes. GO-term analysis revealed that genes matched to cartilage and connective tissue development terms. Conclusion The gene expression profiles from the 3 groups suggest that there are no major differences in gene expression between cartilage from knees with a cartilage injury and knees without an apparent cartilage injury. OA cartilage, as expected, showed markedly different gene expression from the other 2 groups. The gene expression profiles resulting from this low-input RNA-sequencing study offer opportunities to discover new pathways not previously recognized that may be explored in future studies.


Toxicon ◽  
2021 ◽  
Author(s):  
Tongkun Shi ◽  
Xiaoyan Fu ◽  
Fenghua Wang ◽  
Xin Zhang ◽  
Yun Cai ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ying Zhang ◽  
Mo Ruan ◽  
Yongqing Xu ◽  
Jianfei Jiang ◽  
Xinneng Li ◽  
...  

The study focused on the application value of Algebraic Reconstruction Techniques (ART) based magnetic resonance imaging (MRI) in the diagnosis of cartilage injury in patients with patellar dislocation, as well as the treatment effect of platelet-rich plasma (PRP). 50 patients with patellar dislocation admitted to the hospital were selected as the research subjects, and they were randomly divided into the experimental group (lateral retinaculum plasty and PRP treatment) and the control group (lateral retinaculum plasty), with 25 cases in each group. The ART-based MRI technology was used to judge the recovery of patients after surgery and analyze the differences in clinical data between the two groups. The results showed that the running speed under ART algorithm was significantly faster than the traditional Joseph algorithm and Siddon algorithm, and the image reconstruction effect was better. The visual analog scale (VAS) scores of preoperative and postoperative pain and the Hospital for Special Surgery (HSS) score in the experimental group were better than those of the control group ( P < 0.05 ). In conclusion, the ART-based MRI technology can clearly show cartilage injury and the PRP treatment can effectively relieve postoperative pain, with reliable curative effects and simple operations.


Sign in / Sign up

Export Citation Format

Share Document