scholarly journals A COMPARATIVE STUDY OF VARIOUS WAVELET APPROACHES USED IN IMAGE DENOISING

2021 ◽  
Vol 9 (1) ◽  
pp. 1061-1078
Author(s):  
Vijayaragahvan Veeramani, Laavanya Mohan

The world is constantly changing, and vision helps the humans to understand the environmental changes over time. The changes can be seen by, capturing the images. Hence digital image plays a vital role in day to day life. During the process of acquisition of digital image, the qualities of digital pictures are degraded due to additive noise known as adaptive white Gaussian noise. Therefore, the major challenge of image denoising algorithm is to improve the visual appearance while preserving the other details of the image. For the last two decades, wavelet has become an elegant tool in image denoising techniques. Among all wavelet based denoising methods, wavelet thresholding became popular because, wavelet appropriately separates the noisy signal from the image. The wavelet separation leaves the coarse grain noise in approximation sub-band and fine grain noise in detail sub-bands. Therefore, in wavelet based thresholding methods noise in detail sub-bands are threshold and approximate sub-band noise are kept as such. Hence, the efficiency of all wavelet based shrinkage techniques depends on, the choice of threshold parameter, thresholding technique and how the noise in the approximation sub-bands are handled. This paper presents a brief comparative study of denoising techniques proposed in the research articles based on the above parameters for Gaussian noise reduction using various wavelets transform. With the help of these experiments, we are able to identify the strengths and weaknesses of these methods, as well as seek the way ahead towards a definitive solution to the long-standing problem of image denoising.  

Author(s):  
Pallavi Bora ◽  
Kapil Chaudhary

Image Denoising techniques are widely used to remove the noise from the images. Due to the ease of the bilateral filter, it is used very often to remove the noise from the images. In this paper, a novel approach has been proposed to enhanced bilateral filter in conjunction with CNN as a booster to eliminate Gaussian noise from Grey images. Studies reveal that standard CNN using a bilateral filter is the best technique to eliminate Gaussian noise from images along with high PSNR values. This paper also performs a comparative study of the various existing techniques for image denoising with the CNN technique and the applied Bilateral filter Method as a de facto to improve the results in terms of enhanced PSNR values. ECND Net (Enhanced CNN) applied to noisy images with standard deviation σ = 15 gives PSNR values up to 32.81 In comparison to this when both bilateral filter and deep CNN applied, in conjunction produces improved PSNR values up to 34.73 along with the equivalent standard deviation. The results in this work reveal better performance in terms of PSNR as compared to other methods. The test result proves that the bilateral filter Method along with CNN can improve the quality of restored images significantly better.


2014 ◽  
Vol 8 (1) ◽  
pp. 37-41
Author(s):  
Zheng Jian Feng ◽  
Huang Chengwei ◽  
Zhang Ji

The edges and textures of a digital image may be destroyed by traditional denoising methods, which is a difficult problem in image denoising. In this paper, anisotropic diffusion algorithm based on Partial differential equation is studied. First, image denoising algorithms based on Perona-Malik model are studied. Second, a modified Perona-Malik model is proposed. In the proposed model, the gradient statistic and edge thresholds are embedded into the Perona-Malik equation. Finally, the effects of this model and some other models are compared and analyzed. The experimental results show that the proposed modified Perona-Malik model outperforms the original Perona-Malik model in removing Gaussian noise, and the edges and textures of the image are well preserved.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 468 ◽  
Author(s):  
Shalika Arora ◽  
Megha Agarwal ◽  
Veepin Kumar ◽  
Divya Gupta

Image Enhancement technique plays a vital role in digital image processing for making an image to be useful for various applications. This technique is used to improve the quality of degraded images.Usually, the degradation is not evenly spread throughout the image, but most of the time it varies from region to region. Our aim is to first identify the region where enhancement is required and improve that region without disturbing its neighbourhood which does not require any improvement. 


2020 ◽  
Vol 30 (1) ◽  
pp. 240-257
Author(s):  
Akula Suneetha ◽  
E. Srinivasa Reddy

Abstract In the data collection phase, the digital images are captured using sensors that often contaminated by noise (undesired random signal). In digital image processing task, enhancing the image quality and reducing the noise is a central process. Image denoising effectively preserves the image edges to a higher extend in the flat regions. Several adaptive filters (median filter, Gaussian filter, fuzzy filter, etc.) have been utilized to improve the smoothness of digital image, but these filters failed to preserve the image edges while removing noise. In this paper, a modified fuzzy set filter has been proposed to eliminate noise for restoring the digital image. Usually in fuzzy set filter, sixteen fuzzy rules are generated to find the noisy pixels in the digital image. In modified fuzzy set filter, a set of twenty-four fuzzy rules are generated with additional four pixel locations for determining the noisy pixels in the digital image. The additional eight fuzzy rules ease the process of finding the image pixels,whether it required averaging or not. In this scenario, the input digital images were collected from the underwater photography fish dataset. The efficiency of the modified fuzzy set filter was evaluated by varying degrees of Gaussian noise (0.01, 0.03, and 0.1 levels of Gaussian noise). For performance evaluation, Structural Similarity (SSIM), Mean Structural Similarity (MSSIM), Mean Square Error (MSE), Normalized Mean Square Error (NMSE), Universal Image Quality Index (UIQI), Peak Signal to Noise Ratio (PSNR), and Visual Information Fidelity (VIF) were used. The experimental results showed that the modified fuzzy set filter improved PSNR value up to 2-3 dB, MSSIM up to 0.12-0.03, and NMSE value up to 0.38-0.1 compared to the traditional filtering techniques.


2015 ◽  
Vol 14 (02) ◽  
pp. 1550017
Author(s):  
Pichid Kittisuwan

The application of image processing in industry has shown remarkable success over the last decade, for example, in security and telecommunication systems. The denoising of natural image corrupted by Gaussian noise is a classical problem in image processing. So, image denoising is an indispensable step during image processing. This paper is concerned with dual-tree complex wavelet-based image denoising using Bayesian techniques. One of the cruxes of the Bayesian image denoising algorithms is to estimate the statistical parameter of the image. Here, we employ maximum a posteriori (MAP) estimation to calculate local observed variance with generalized Gamma density prior for local observed variance and Laplacian or Gaussian distribution for noisy wavelet coefficients. Evidently, our selection of prior distribution is motivated by efficient and flexible properties of generalized Gamma density. The experimental results show that the proposed method yields good denoising results.


2020 ◽  
Vol 4 (2) ◽  
pp. 53-60
Author(s):  
Latifah Listyalina ◽  
Yudianingsih Yudianingsih ◽  
Dhimas Arief Dharmawan

Image processing is a technical term useful for modifying images in various ways. In medicine, image processing has a vital role. One example of images in the medical world, namely retinal images, can be obtained from a fundus camera. The retina image is useful in the detection of diabetic retinopathy. In general, direct observation of diabetic retinopathy is conducted by a doctor on the retinal image. The weakness of this method is the slow handling of the disease. For this reason, a computer system is required to help doctors detect diabetes retinopathy quickly and accurately. This system involves a series of digital image processing techniques that can process retinal images into good quality images. In this research, a method to improve the quality of retinal images was designed by comparing the methods for adjusting histogram equalization, contrast stretching, and increasing brightness. The performance of the three methods was evaluated using Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), and Signal to Noise Ratio (SNR). Low MSE values and high PSNR and SNR values indicated that the image had good quality. The results of the study revealed that the image was the best to use, as evidenced by the lowest MSE values and the highest SNR and PSNR values compared to other techniques. It indicated that adaptive histogram equalization techniques could improve image quality while maintaining its information.


Sign in / Sign up

Export Citation Format

Share Document