scholarly journals Computer aided production process design work methods

Mechanik ◽  
2017 ◽  
Vol 90 (8-9) ◽  
pp. 805-807
Author(s):  
Izabela Rojek

The article presents the computer aided design methods as applied for arrangement of production processes in the range from the simplest to the most advanced ones. The idea behind the research procedure as conducted by the author was to develop a method, models and expert system that would resemble a human expert in the field. This goal was achieved using neural networks.

1989 ◽  
Vol 5 (3) ◽  
pp. 447-452 ◽  
Author(s):  
K. G. Gebremedhin ◽  
S. S. Jagdale ◽  
R. Gupta

2022 ◽  
Vol 25 (6) ◽  
pp. 708-719
Author(s):  
D. A. Ishenin ◽  
A. S. Govorkov

The study aimed to develop an algorithm for computer-aided design (CAD) of working operations. A processing route for machining components was developed based on the criteria of production manufacturability, industrial data and a digital model of the product. The process of machining a workpiece was analysed using a method of theoretical separation. The machining process of a frame workpiece was used as a model. The identified formal parameters formed a basis for developing a CAD algorithm and a model of manufacturing route associated with the mechanical processing of a work-piece applying a condition-action rule, as well as mathematical logic. The research afforded a scheme for selecting process operations, given the manufacturability parameters of a product design. The concept of CAD algorithm was developed to design a production process of engineering products with given manufacturability parameters, including industrial data. The principle of forming a route and selecting a machining process was proposed. Several criteria of production manufacturability (labour intensity, consumption of materials, production costs) were selected to evaluate mechanical processing. A CAD algorithm for designing technological operations considering the parameters of manufacturability was developed. The algorithm was tested by manufacturing a frame workpiece. The developed algorithm can be used for reducing labour costs and development time, at the same time as improving the quality of production processes. The formalisation of process design is a crucial stage in digitalisation and automation of all production processes.


1992 ◽  
Vol 8 (02) ◽  
pp. 77-88
Author(s):  
S. Madden ◽  
H. H. Vanderveldt ◽  
J. Jones

Computer Aided Process Planning (CAPP) integrated with Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) will form the basis of engineering/planning systems of the future. These systems will have the capability to operate in a paperless environment and provide highly optimized process operation plans. The WELDEXCELL System is a prototype of such a system for welding in shipyards. The paper discusses three significant computer technology advances which have been in into the WELDEXCELL prototype. First is a computerized system for allowing multiple knowledge sources (expert systems, humans, data systems, etc.) to work together to solve a common problem (the weld plan). This system is called a "blackboard." The second is a methodology for the blackboard to communicate to the human user. This interface includes full interactive graphics fully integrated to CAD as well as data searches and automatic completion of routine engineering tasks. The third is artificial neural networks (ANS's), which are based on biological neural networks (such as the human brain) and which can do neural reasoning tasks about difficult problems. ANS's offer the opportunity to model highly complex multivariable and nonlinear processes (for example, welding) and provide a means for an engineer to quantitatively assess the process and its operation.


From time to time the Royal Society organizes meetings for the discussion of some new development in engineering and applied science. It seemed possible to the organizers of this meeting that it would be profitable to bring together workers in industry and in the universities to discuss some aspect of computer-aided design. As you will see we have chosen the application of computer aids to mechanical engineering design and manufacture. This restriction to mechanical engineering was deliberate, partly because the application of computer aids to mechanical engineering design is somewhat behind similar activities in electrical and civil engineering. Another reason is that the development of such applications has reached a particularly interesting stage, and it is now perhaps appropriate to review progress and to discuss the directions in which future research should proceed. Although some examples of computer-aided design in mechanical engineering can be found from the earliest days of computing, the development really started in the late fifties with early experiments in the use of graphic displays and with the introduction of multi-access computing. Some may date the beginning of the developments which we are going to discuss today, from the work at M. I. T. on automated programmed drawing started in 1958. This has led to a concentration of effort on graphics and computer-aided drafting. Much research has been done on the mathematical description of curves, surfaces and volumes in a form suitable for engineering design. Work has been done on the automatic dimensioning of drawings, hidden line removal, the prob­lems of lofting, etc.


2013 ◽  
Vol 765-767 ◽  
pp. 1019-1022
Author(s):  
Lian Jun Hu ◽  
Xiao Hui Zeng ◽  
Hong Song ◽  
Qian Li

The blending of liquors is a key process in the production of liquors. According to time-frequency localization characteristics of the wavelet transform and advantages of the neural network such as ability to develop, fault-tolerance, self-adaptability, self-learning, and robustness, a mathematic model based on wavelet neural networks is proposed in liquor blending processes with the help of computer-aided design technologies, which makes liquor blending technologies more scientific.


Author(s):  
H S Abdalla ◽  
J Knight

A new approach for concurrent product and process design of mechanical parts is presented in this paper. This approach enables designers to ensure that the product will be manufactured with the existing manufacturing facility at high quality and lowest cost. It is composed of an integrated expert and CAD (computer aided design) system that meets the requirements for accomplishing the concept of design for manufacturability or concurrent engineering. The system is based mainly on three tasks: firstly, developing a technique for automated feature recognition from the database of a solid modeller; secondly, interfacing the expert system tool-kit with the solid modelling system; finally, building an expert system that contains extensive information about both manufacturing facilities and product features. The expert system provides feedback about manufacturing concerns such as process limits or design inconsistencies. This work is part of the present extended research plan for developing a generic system suitable for various manufacturing practices based on design for manufacturability strategy.


Sign in / Sign up

Export Citation Format

Share Document