scholarly journals Determination of the stressed state of thin-construction structures using the methods of the theory of shells

2017 ◽  
Vol 3 (3) ◽  
pp. 64-78
Author(s):  
Igor G Emel’yanov ◽  
Alexey V Kuznetsov

Introduction. With the development of numerical methods and computational complexes, it is quite easy to evaluate the stress state of thin-walled structures in the form of rotation bodies. However, when solving such problems by the finite element method, it is necessary to choose such finite element grid to "grasp" all possible singularities of the stressed state. To correctly take them into account, you must reduce the size of the finite elements. Reducing the size of the elements leads to an increase in the required computing power. Formulation of the problem. When solving applied problems, even with a sufficiently coarse grid, the number of elements can exceed hundreds of thousands. When solving problems for real constructions in a three-dimensional setting, the amount of computation can be quite large and not every supercomputer can even handle such a solution. Objective. The purpose of this paper is to use the well-known approach used in shell theory, which allows us to reduce the three-dimensional problem to the solution of a onedimensional problem, which substantially reduces the requirements for computing power. Method (methodology). The problem of determining the stress state of shell structures in the form of bodies of revolution is considered. The approach is based on the integration of the equations of the theory of shells and the expansion of functions into Fourier series for separation of variables. The expansion into a discrete Fourier series in cosines and sines is used in this paper, which describes arbitrary asymmetric mechanical loads. Results. A thin-walled cylindrical structure hinged at the ends is considered. The structure is loaded in three places by a distributed force acting normal to the surface of the shell. After integrating the system of equations for the shell, the found stress-strain state of the shell is determined by the stress components on the outer and inner surfaces of the shell and the displacement components. The paper compares the calculation results with the proposed methodology and the finite element method. The conclusion. It is shown that the use of methods of shell theory, and the proposed expansion of resolving functions and loads in a Fourier series, allows solving problems using small computing resources. At the same time, the necessary accuracy of calculation for all components of the stress-strain state of the structure is ensured.

10.12737/4939 ◽  
2014 ◽  
Vol 3 (3) ◽  
pp. 28-36
Author(s):  
Прозоровский ◽  
A. Prozorovskiy ◽  
Корецкий ◽  
S. Koretskiy ◽  
Шиверский ◽  
...  

The computational method was suggested for reliability of heat-power engine structures under continuous random in-process loads. The method is based on numerical statistical modeling of an in-process stress-strain state (SSS) of a structure with random characteristics of structural materials and computation of damage accumulation and durability of the structure under random stationary loadings. The chemical criterion of durable strength has been applied to calculate damage accumulation. The iteration method for a three-dimensional thermo-mechanics problem and the finite-element method have been used to compute the SSS of structures regarding creep. As an example of application of the developed method, computations for durability and reliability of two-layer cooled structure of a thermo-energetic power plant case have been conducted.


2020 ◽  
Vol 46 (3) ◽  
pp. 175-181
Author(s):  
Marcelo Bighetti Toniollo ◽  
Mikaelly dos Santos Sá ◽  
Fernanda Pereira Silva ◽  
Giselle Rodrigues Reis ◽  
Ana Paula Macedo ◽  
...  

Rehabilitation with implant prostheses in posterior areas requires the maximum number of possible implants due to the greater masticatory load of the region. However, the necessary minimum requirements are not always present in full. This project analyzed the minimum principal stresses (TMiP, representative of the compressive stress) to the friable structures, specifically the vestibular face of the cortical bone and the vestibular and internal/lingual face of the medullary bone. The experimental groups were as follows: the regular splinted group (GR), with a conventional infrastructure on 3 regular-length Morse taper implants (4 × 11 mm); and the regular pontic group (GP), with a pontic infrastructure on 2 regular-length Morse taper implants (4 × 11 mm). The results showed that the TMiP of the cortical and medullary bones were greater for the GP in regions surrounding the implants (especially in the cervical and apical areas of the same region) but they did not reach bone damage levels, at least under the loads applied in this study. It was concluded that greater stress observed in the GP demonstrates greater fragility with this modality of rehabilitation; this should draw the professional's attention to possible biomechanical implications. Whenever possible, professionals should give preference to use of a greater number of implants in the rehabilitation system, with a focus on preserving the supporting tissue with the generation of less intense stresses.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


Author(s):  
T. S. Sultanmagomedov ◽  
◽  
R. N. Bakhtizin ◽  
S. M. Sultanmagomedov ◽  
T. M. Halikov ◽  
...  

Study is due to the possibility of loss of stability of the pipeline in the process of pumping a product with a positive operating temperature and the formation of thawing halos. The article presents the ways of solving the thermomechanical problem of pipeline displacement due to thawing. The rate of formation of a thawing halo is investigated depending on the initial temperatures of the soil and the pumped product. The developed monitoring system makes it possible to study the rate of occurrence of thawing halos in the process of pumping the product. An experimental study on the formation of thawing halos around the pipeline was carried out on an experimental model. A thermophysical comparative calculation of temperatures around the pipeline on a model by the finite element method has been carried out. Keywords: underground pipeline; permafrost; thawing halo; monitoring; operating conditions; stress–strain state.


2014 ◽  
Vol 644-650 ◽  
pp. 1551-1555
Author(s):  
Jian Ming Zhang ◽  
Yong He

This paper is concerned with the convergence of the h-p version of the finite element method for three dimensional Poisson problems with edge singularity on quasi-uniform meshes. First, we present the theoretical results for the convergence of the h-p version of the finite element method with quasi-uniform meshes for elliptic problems on polyhedral domains on smooth functions in the framework of Jacobi-weighted Sobolev spaces. Second, we investigate and analyze numerical results for three dimensional Poission problems with edge singularity. Finally, we verified the theoretical predictions by the numerical computation.


Vestnik MGSU ◽  
2020 ◽  
pp. 452-461
Author(s):  
Emil Imran Оglu Alirzaev ◽  
Marina E. Dement'eva

Introduction. One of the serious problems in the construction of underground structures in a dense urban area is the occurrence of excess deformations of the foundations of operating buildings that fall into the zone of influence of underground construction. The subject of the study was the calculated justification of the modern technology of compensatory injection. The relevance of the task is determined by the fact that the choice of the most effective protection technology should be based not only on a comparison of technological precipitation with maximum permissible values, but also on the assessment of the possibility of monitoring and controlling the movements of the foundations of buildings and structures during construction and subsequent operation. The purpose of the study was to compare various methods of protecting the foundations of existing buildings and structures and justify the selection of the most effective of them for further implementation and dissemination in the design and construction of urban underground structures. Materials and methods. On the basis of the survey data of the operated building falling into the impact zone of excavation of the pit for the construction of the installation and shield chamber of the subway, the parameters of the stress-strain state of its foundations are studied by mathematical modeling. The problem was solved by the finite element method based on the software and computer complex Z_Soil v.18.24. Results. Based on the analysis of the results of the examination of the administrative building using the finite element method, a change in the parameters of the stress-strain state of the foundations was modeled with various technologies for strengthening it. In the course of solving the geotechnical problem, it was found that the minimum impact on the foundations of the building during the construction of the pit was obtained in the method of compensatory injection. The system of criteria for making a decision on choosing an effective way to ensure the suitability of buildings in the underground construction zone for operation is substantiated. Conclusions. The results of this work can be used to justify the choice of technology for prevention and control of excess deformations of foundations. The function for calculating the volume of injected material in the Z_Soil software and computer complex can be used to justify the consumption of materials and the economic efficiency of the technological solution.


Sign in / Sign up

Export Citation Format

Share Document