Pulsed eddy current system for dynamic inspection of defects

2004 ◽  
Vol 46 (5) ◽  
pp. 256-259 ◽  
Author(s):  
G Y Tian ◽  
A Sophian ◽  
D Taylor ◽  
J Rudlin
1997 ◽  
Vol 503 ◽  
Author(s):  
J. C. Moulder ◽  
J. A. Bieber

ABSTRACTPulsed, or transient eddy-current methods are an effective tool for quantitative characterization of hidden corrosion and cracking in multi-layer aircraft structures. Eddy currents are the method of choice for this task, since they penetrate multiple layers of metal, whether or not the layers are mechanically bonded. The pulsed eddy-current technique is an important advance over conventional eddy-current methods because it rapidly acquires data over a wide range of frequencies, thereby providing more information than a conventional, single-frequency eddy-current instrument. We have combined a pulsed eddy-current instrument with a portable two-axis scanner to produce an instrument capable of rapidly scanning aircraft lap splices in situ, producing pseudo-color images that reveal hidden corrosion or cracking. A unique feature of time-domain eddy-current data is the ability to selectively filter clutter from the image by time-gating the pulsed signal. Time-gating permits the user to select the inspection depth, thereby eliminating interference from upper layers, air gaps, lift-off variation and fasteners. By using a theoretical model of the pulsed eddy-current system, it is possible to interpret the data quantitatively, yielding quantitative maps of corrosion damage. Some of the same advantages of the pulsed eddycurrent technique apply to the characterization of hidden fatigue cracks as well, although the tieory for crack signals is less advanced.


2021 ◽  
Author(s):  
Roddy Hebert ◽  
◽  
Rojelio Medina ◽  
JC Pinkett ◽  
Tyler Costa ◽  
...  

In an ongoing attempt to learn more about subsurface conditions before and during production, service companies and operators have explored a wide range of technologies. One technology, that allows for transmission of subsurface data back to the surface, is the installment of fiber optic cable behind casing. Fiber optic cable not only provides subsurface data conditions affecting production, but it serves as a highway for data transmission in seismic surveys, as well as, monitoring production information itself along the entire length of the cable. We will expand on methods used to preserve this installment of the fiber optic cable by identifying its location behind casing. Circumferential ultrasonic scanning techniques have been used for many years to inspect the casing itself, and cement behind the first string of casing. These techniques offer a better inspection of channeling, or partial vertical void in cement behind first string of casing, than just your standard radial cement bond tool. Cement and Casing Inspection have been useful services of the ultrasonic scanning services, but it isn’t without limitations, whereas this scanning tool has a shallow depth of investigation. Traditionally, standard cement bond logs are used in conjunction with the circumferential ultrasonic scanning services to examine the bond index, and to offer some additional understanding of the cement bond to casing, as well as cement to formation bond. In that shallow ultrasonic scan, is where this publication will demonstrate the value added of locating the fiber optic cable, but it is not without some uncertainty. To reduce some of that uncertainty, a pulsed-eddy current system, which uses an arm-mounted pad sensor that contacts the inside of the first casing string, utilizes pulsed-eddy current technology to accurately locate the position of the fiber optic cable mounting clamps. Detecting the location of the clamps, offers great insight into oriented perforation, but as this publication will demonstrate, the fiber optic cable can meander in between those clamps. The circumferential ultrasonic scanning service offers visibility of the meandering of that fiber optic cable, in between clamps, and when used in combination with the pulsed-eddy current system, this creates an integrated service that reduces the probability of perforating the installment of the fiber optic cable. Purpose of this paper, will be, to demonstrate the use of the impedance data, gained from the circumferential ultrasonic scanning tool, in combination with the fiber optic clamp location from the pulsed-eddy current tool, to locate the fiber optic flatpack between clamp locations. However, there are limitations in the location of the fiber flatpack, as in, gaps between flatpack and casing, and/or lack of cement coverage. The final product will include the depth location of clamps, station degrees of fiber loop, degrees of fiber flatpack location, and level of confidence by interval shading. This information will give customers greater confidence in the execution of oriented perforation procedures, without damaging fiber optic cable flatpack.


2008 ◽  
Author(s):  
N. Nakagawa ◽  
S. J. Lee ◽  
C. Lee ◽  
M. J. Johnson ◽  
C. C. H. Lo ◽  
...  

2006 ◽  
Vol 6 (6) ◽  
pp. 1511-1517 ◽  
Author(s):  
Christophe P. Dolabdjian ◽  
Laurent Perez ◽  
Victor O. De Haan ◽  
Paul A. De Jong

2020 ◽  
Vol 64 (1-4) ◽  
pp. 19-29
Author(s):  
Shuting Ren ◽  
Yong Li ◽  
Bei Yan ◽  
Jinhua Hu ◽  
Ilham Mukriz Zainal Abidin ◽  
...  

Structures of nonmagnetic materials are broadly used in engineering fields such as aerospace, energy, etc. Due to corrosive and hostile environments, they are vulnerable to the Subsurface Pitting Corrosion (SPC) leading to structural failure. Therefore, it is imperative to conduct periodical inspection and comprehensive evaluation of SPC using reliable nondestructive evaluation techniques. Extended from the conventional Pulsed eddy current method (PEC), Gradient-field Pulsed Eddy Current technique (GPEC) has been proposed and found to be advantageous over PEC in terms of enhanced inspection sensitivity and accuracy in evaluation and imaging of subsurface defects in nonmagnetic conductors. In this paper two GPEC probes for uniform field excitation are intensively analyzed and compared. Their capabilities in SPC evaluation and imaging are explored through simulations and experiments. The optimal position for deployment of the magnetic field sensor is determined by scrutinizing the field uniformity and inspection sensitivity to SPC based on finite element simulations. After the optimal probe structure is chosen, quantitative evaluation and imaging of SPC are investigated. Signal/image processing algorithms for SPC evaluation are proposed. Through simulations and experiments, it has been found that the T-shaped probe together with the proposed processing algorithms is advantageous and preferable for profile recognition and depth evaluation of SPC.


Sign in / Sign up

Export Citation Format

Share Document