scholarly journals Scalar Wave Equation Modeling with Time-Space Domain Dispersion-Relation-Based Staggered-Grid Finite-Difference Schemes

2011 ◽  
Vol 101 (1) ◽  
pp. 141-159 ◽  
Author(s):  
Y. Liu ◽  
M. K. Sen
Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. T17-T40 ◽  
Author(s):  
Zhiming Ren ◽  
Yang Liu

Staggered-grid finite-difference (SFD) methods are widely used in modeling seismic-wave propagation, and the coefficients of finite-difference (FD) operators can be estimated by minimizing dispersion errors using Taylor-series expansion (TE) or optimization. We developed novel optimal time-space-domain SFD schemes for acoustic- and elastic-wave-equation modeling. In our schemes, a fourth-order multiextreme value objective function with respect to FD coefficients was involved. To yield the globally optimal solution with low computational cost, we first used variable substitution to turn our optimization problem into a quadratic convex one and then used least-squares (LS) to derive the optimal SFD coefficients by minimizing the relative error of time-space-domain dispersion relations over a given frequency range. To ensure the robustness of our schemes, a constraint condition was imposed that the dispersion error at each frequency point did not exceed a given threshold. Moreover, the hybrid absorbing boundary condition was applied to remove artificial boundary reflections. We compared our optimal SFD with the conventional, TE-based time-space-domain, and LS-based SFD schemes. Dispersion analysis and numerical simulation results suggested that the new SFD schemes had a smaller numerical dispersion than the other three schemes when the same operator lengths were adopted. In addition, our LS-based time-space-domain SFD can obtain the same modeling accuracy with shorter spatial operator lengths. We also derived the stability condition of our schemes. The experiment results revealed that our new LS-based SFD schemes needed a slightly stricter stability condition.


2013 ◽  
Vol 56 (6) ◽  
pp. 840-850 ◽  
Author(s):  
LIANG Wen-Quan ◽  
YANG Chang-Chun ◽  
WANG Yan-Fei ◽  
LIU Hong-Wei

Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. T237-T248 ◽  
Author(s):  
Zhikai Wang ◽  
Jingye Li ◽  
Benfeng Wang ◽  
Yiran Xu ◽  
Xiaohong Chen

Explicit finite-difference (FD) methods with high accuracy and efficiency are preferred in full-waveform inversion and reverse time migration. The Taylor-series expansion (TE)-based FD methods can only obtain high accuracy on a small wavenumber zone. We have developed a new explicit FD method with spatial arbitrary even-order accuracy based on the mixed [Formula: see text] (wavenumber)-space domain function approximation for the acoustic wave equation, and we derived the FD coefficients by minimizing the approximation error in a least-squares (LS) sense. The weighted pseudoinverse of mixed [Formula: see text]-space matrix is introduced into the LS optimization problem to improve the accuracy. The new method has an exact temporal derivatives discretization in homogeneous media and also has higher temporal and spatial accuracy in heterogeneous media. Approximation errors and numerical dispersion analysis demonstrate that the new FD method has a higher numerical accuracy than conventional TE-based FD and TE-based time-space domain dispersion-relation FD methods. Stability analysis reveals that our proposed method requires a slightly stricter stability condition than the TE-based FD and TE-based time-space domain dispersion-relation FD methods. Numerical tests in the homogeneous model, horizontally layered model, and 2D modified Sigsbee2 model demonstrate the accuracy, efficiency, and flexibility of the proposed new FD method.


Sign in / Sign up

Export Citation Format

Share Document