Acoustic and elastic modeling by optimal time-space-domain staggered-grid finite-difference schemes

Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. T17-T40 ◽  
Author(s):  
Zhiming Ren ◽  
Yang Liu

Staggered-grid finite-difference (SFD) methods are widely used in modeling seismic-wave propagation, and the coefficients of finite-difference (FD) operators can be estimated by minimizing dispersion errors using Taylor-series expansion (TE) or optimization. We developed novel optimal time-space-domain SFD schemes for acoustic- and elastic-wave-equation modeling. In our schemes, a fourth-order multiextreme value objective function with respect to FD coefficients was involved. To yield the globally optimal solution with low computational cost, we first used variable substitution to turn our optimization problem into a quadratic convex one and then used least-squares (LS) to derive the optimal SFD coefficients by minimizing the relative error of time-space-domain dispersion relations over a given frequency range. To ensure the robustness of our schemes, a constraint condition was imposed that the dispersion error at each frequency point did not exceed a given threshold. Moreover, the hybrid absorbing boundary condition was applied to remove artificial boundary reflections. We compared our optimal SFD with the conventional, TE-based time-space-domain, and LS-based SFD schemes. Dispersion analysis and numerical simulation results suggested that the new SFD schemes had a smaller numerical dispersion than the other three schemes when the same operator lengths were adopted. In addition, our LS-based time-space-domain SFD can obtain the same modeling accuracy with shorter spatial operator lengths. We also derived the stability condition of our schemes. The experiment results revealed that our new LS-based SFD schemes needed a slightly stricter stability condition.

2016 ◽  
Vol 24 (04) ◽  
pp. 1650016 ◽  
Author(s):  
Hongyong Yan ◽  
Lei Yang ◽  
Xiang-Yang Li ◽  
Hong Liu

Finite-difference (FD) schemes have been used widely for solving wave equations in seismic exploration. However, the conventional FD schemes hardly guarantee high accuracy at both small and large wavenumbers. In this paper, we propose an optimal time-space domain FD scheme for acoustic vertical transversely isotropic (VTI) wave modeling. The optimal FD coefficients for the second-order spatial derivatives are derived by approaching the time-space domain dispersion relation of acoustic VTI wave equations with the combination of the Taylor-series expansion and the sampling interpolation. We perform numerical dispersion analyses and acoustic VTI modeling using the optimal time-space domain FD scheme. The numerical dispersion analyses show that the optimal FD scheme has smaller dispersion than the conventional FD scheme at large wavenumbers, and also preserves high accuracy at small wavenumbers. The acoustic VTI modeling examples also demonstrate that the optimal time-space domain FD scheme has greater accuracy compared with the conventional time-space domain FD scheme for the same modeling parameters.


Geophysics ◽  
2021 ◽  
pp. 1-82
Author(s):  
Yang Liu

The time step and grid spacing in explicit finite-difference (FD) modeling are constrained by the Courant-Friedrichs-Lewy (CFL) condition. Recently, it has been found that spatial FD coefficients may be designed through simultaneously minimizing the spatial dispersion error and maximizing the CFL number. This allows one to stably use a larger time step or a smaller grid spacing than usually possible. However, when using such a method, only second-order temporal accuracy is achieved. To address this issue, I propose a method to determine the spatial FD coefficients, which simultaneously satisfy the stability condition of the whole wavenumber range and the time–space domain dispersion relation of a given wavenumber range. Therefore, stable modeling can be performed with high-order spatial and temporal accuracy. The coefficients can adapt to the variation of velocity in heterogeneous models. Additionally, based on the hybrid absorbing boundary condition, I develop a strategy to stably and effectively suppress artificial reflections from the model boundaries for large CFL numbers. Stability analysis, accuracy analysis and numerical modeling demonstrate the accuracy and effectiveness of the proposed method.


2013 ◽  
Vol 56 (6) ◽  
pp. 840-850 ◽  
Author(s):  
LIANG Wen-Quan ◽  
YANG Chang-Chun ◽  
WANG Yan-Fei ◽  
LIU Hong-Wei

Geophysics ◽  
1993 ◽  
Vol 58 (4) ◽  
pp. 576-588 ◽  
Author(s):  
Guido Kneib ◽  
Claudia Kerner

The optimum method for seismic modeling in random media must (1) be highly accurate to be sensitive to subtle effects of wave propagation, (2) allow coarse sampling to model media that are large compared to the scale lengths and wave propagation distances which are long compared to the wavelengths. This is necessary to obtain statistically meaningful overall attributes of wavefields. High order staggered grid finite‐difference algorithms and the pseudospectral method combine high accuracy in time and space with coarse sampling. Investigations for random media reveal that both methods lead to nearly identical wavefields. The small differences can be attributed mainly to differences in the numerical dispersion. This result is important because it shows that errors of the numerical differentiation which are caused by poor polynomial interpolation near discontinuities do not accumulate but cancel in a random medium where discontinuities are numerous. The differentiator can be longer than the medium scale length. High order staggered grid finite‐difference schemes are more efficient than pseudospectral methods in two‐dimensional (2-D) elastic random media.


Sign in / Sign up

Export Citation Format

Share Document