Evaluation of Site Effects on Strong-Motion Records in Concepcion during the 2010 Maule, Chile, Earthquake

2014 ◽  
Vol 104 (5) ◽  
pp. 2503-2511 ◽  
Author(s):  
S. Midorikawa ◽  
H. Yamanaka ◽  
K. Chimoto ◽  
R. Riddell ◽  
H. Miura ◽  
...  
2021 ◽  
Author(s):  
Mona Izadi ◽  
Shinichi Matsushima

Abstract It is known that coda of strong motion records are products of numerous scatterings of body and surface waves within the subsurface soil structure. Several studies have successfully simulated coda wave envelopes by modelling the energy decay. However, due to limitations of quantifying soil heterogeneities, deterministic simulation of scattered wavefields is much more challenging. Therefore, the reverse problem of estimating non statistical properties of subsurface structure from coda waves remains a theoretical potential. On the other hand, machine learning techniques have proven useful in dealing with problems of similar nature, where a theoretical solution is imaginable yet hard to achieve due to a great number of unknown variables. This study utilizes artificial neural networks to propose a new approach of evaluating site effects from coda waves, with the future prospect of obtaining the similar results from microtremor records. A Long Short-Term Memory recurrent neural network is designed using Tensorflow 2 library in Python language. The study utilizes a strong motion dataset consisting of about 60000 3-component records as well as borehole data at 464 stations of Kiban-Kyoshin Network across Japan. The prediction input is coda wave timeseries of strong motion records, defined based on a parametric energy criterion, and all 3 seismograph components EW, NS and UD are used as parallel sequential features. In the first step, the prediction target is a vector of 3 site effect proxies namely, time-averaged shear-wave velocities for the upper 30-m depth Vs30 and the upper 10-m depth Vs10 and predominant frequency f0. In this step, different model parameter combinations are tested to ensure the basic model’s ability in extracting site-specific information from the input coda waves. One of the combinations is then used in the second step, in which the prediction target is surface to downhole ratio of Fourier Amplitude Spectra. For each of the 3 components EW, NS and UD, 100 identical networks are trained to each predict the desired ratio at a certain target frequency. Accuracy of test sample predictions confirms applicability of the proposed approach as well as its potential for future works on microtremor timeseries instead of coda waves.


1998 ◽  
Vol 14 (1) ◽  
pp. 75-93 ◽  
Author(s):  
Francisco J. Chávez-García ◽  
Julio Cuenca

The region around Acapulco, on the Pacific coast of Mexico, is subjected to large seismic risk. This paper presents a contribution to improve microzonation of this region. We investigated site effects using three basic sources of data: strong-motion records from all of the instruments that have operated within the area; weak-motion records obtained from the installation and operation of a temporal, digital, seismograph network; and measurements of microtremors at 35 sites. We compared and evaluated different techniques of data analysis. We show that very coherent results are obtained from different kinds of measurement, and that microtremor records are very useful to interpolate sparse earthquake data. We propose two maps that reflect the fundamental characteristics of site effects in the area: dominant period and maximum relative amplification. These maps may be used to improve current microzonation of Acapulco.


1987 ◽  
Vol 77 (4) ◽  
pp. 1147-1167
Author(s):  
M. Çelebi

Abstract Site-response experiments were performed 5 months after the MS = 7.8 central Chile earthquake of 3 March 1985 to identify amplification due to topography and geology. Topographical amplification at Canal Beagle, a subdivision of Viña del Mar, was hypothesized immediately after the main event, when extensive damage was observed on the ridges of Canal Beagle. Using frequency-dependent spectral ratios of aftershock data obtained from a temporarily established dense array, it is shown that there is substantial amplification of motions at the ridges of Canal Beagle. The data set constitutes the first such set depicting topographical amplification at a heavily populated region and correlates well with the damage distribution observed during the main event. Dense arrays established in Viña del Mar also yielded extensive data which are quantified to show that, in the range of frequencies of engineering interest, there was substantial amplification at different sites of different geological formations. To substantiate this, spectral ratios developed from the strong-motion records of the main event are used to show the extensive degree of amplification at an alluvial site as compared to a rock site. Similarly, spectral ratios developed from aftershocks recorded at comparable stations qualitatively confirm that the frequency ranges for which the amplification of motions occur are quite similar to those from strong-motion records. In case of weak motions, the denser arrays established temporarily as described herein can be used to identify the frequency ranges for which amplification occurs, to quantify the degree of frequency-dependent amplification and used in microzonation of closely spaced localities.


Sign in / Sign up

Export Citation Format

Share Document