El Cuchillo Seismic Sequence of October 2013–July 2014 in the Burgos Basin, Northeastern Mexico: Hydraulic Fracturing or Reservoir‐Induced Seismicity?

2018 ◽  
Vol 108 (5B) ◽  
pp. 3092-3106 ◽  
Author(s):  
Juan C. Montalvo‐Arrieta ◽  
Xyoli Pérez‐Campos ◽  
Luis G. Ramos‐Zuñiga ◽  
Edgar G. Paz‐Martínez ◽  
Jorge A. Salinas‐Jasso ◽  
...  
2013 ◽  
Vol 195 (2) ◽  
pp. 1282-1287 ◽  
Author(s):  
Arno Zang ◽  
Jeoung Seok Yoon ◽  
Ove Stephansson ◽  
Oliver Heidbach

Author(s):  
Marcelo Assumpção ◽  
Vasile Marza ◽  
Lucas Barros ◽  
Cristiano Chimpliganond ◽  
José Eduardo Soares ◽  
...  

SPE Journal ◽  
2021 ◽  
pp. 1-12
Author(s):  
Gang Hui ◽  
Shengnan Chen ◽  
Zhangxin Chen ◽  
Fei Gu ◽  
Mathab Ghoroori ◽  
...  

Summary The relationships among formation properties, fracturing operations, and induced earthquakes nucleated at distinctive moments and positions remain unclear. In this study, a complete data set on formations, seismicity, and fracturing treatments is collected in Fox Creek, Alberta, Canada. The data set is then used to characterize the induced seismicity and evaluate its susceptibility toward fracturing stimulations via integration of geology, geomechanics, and hydrology. Five mechanisms are identified to account for spatiotemporal activation of the nearby faults in Fox Creek, where all major events [with a moment magnitude (Mw) greater than 2.5] are caused by the increase in pore pressure and poroelastic stress during the fracturing operation. In addition, an integrated geological index (IGI) and a combined geomechanical index (CGI) are first proposed to indicate seismicity susceptibility, which is consistent with the spatial distribution of induced earthquakes. Finally, mitigation strategy results suggest that enlarging a hydraulic fracture-fault distance and decreasing a fracturing job size can reduce the risk of potential seismic activities.


1988 ◽  
Vol 78 (6) ◽  
pp. 2025-2040
Author(s):  
D.W. Simpson ◽  
W.S. Leith ◽  
C.H. Scholz

Abstract The temporal distribution of induced seismicity following the filling of large reservoirs shows two types of response. At some reservoirs, seismicity begins almost immediately following the first filling of the reservoir. At others, pronounced increases in seismicity are not observed until a number of seasonal filling cycles have passed. These differences in response may correspond to two fundamental mechanisms by which a reservoir can modify the strength of the crust—one related to rapid increases in elastic stress due to the load of the reservoir and the other to the more gradual diffusion of water from the reservoir to hypocentral depths. Decreased strength can arise from changes in either elastic stress (decreased normal stress or increased shear stress) or from decreased effective normal stress due to increased pore pressure. Pore pressure at hypocentral depths can rise rapidly, from a coupled elastic response due to compaction of pore space, or more slowly, with the diffusion of water from the surface.


2020 ◽  
Vol 58 (3) ◽  
Author(s):  
Ryan Schultz ◽  
Robert J. Skoumal ◽  
Michael R. Brudzinski ◽  
Dave Eaton ◽  
Brian Baptie ◽  
...  

Author(s):  
Alireza Babaie Mahani ◽  
Dmytro Malytskyy ◽  
Ryan Visser ◽  
Mark Hayes ◽  
Michelle Gaucher ◽  
...  

Abstract We present detailed velocity and density models for the Montney unconventional resource play in northeast British Columbia, Canada. The new models are specifically essential for robust hypocenter determination in the areas undergoing multistage hydraulic-fracturing operations and for detailed analysis of induced seismicity processes in the region. For the upper 4 km of the sedimentary structure, we review hundreds of well logs and select sonic and density logs from 19 locations to build the representative models. For depths below 4 km, we extend our models using data from the southern Alberta refraction experiment (Clowes et al., 2002). We provide one set of models for the entire Montney play along with two separated sets for the southern and northern areas. Specifically, the models for the southern and northern Montney play are based on logs located in and around the Kiskatinaw Seismic Monitoring and Mitigation Area and the North Peace Ground Motion Monitoring area, respectively. To demonstrate the usefulness of our detailed velocity model, we compare the hypocenter location of earthquakes that occurred within the Montney play as determined with our model and the simple two-layered model (CN01) routinely used by Natural Resources Canada. Locations obtained by our velocity model cluster more tightly with the majority of events having root mean square residual of <0.2  s compared with that of <0.4  s when the CN01 model is used. Cross sections of seismicity versus depth across the area also show significant improvements in the determination of focal depths. Our model results in a reasonable median focal depth of ∼2  km for events in this area, which is consistent with the completion depths of hydraulic-fracturing operations. In comparison, most solutions determined with the CN01 model have fixed focal depths (0 km) due to the lack of depth resolution.


Sign in / Sign up

Export Citation Format

Share Document