scholarly journals Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity

2013 ◽  
Vol 195 (2) ◽  
pp. 1282-1287 ◽  
Author(s):  
Arno Zang ◽  
Jeoung Seok Yoon ◽  
Ove Stephansson ◽  
Oliver Heidbach
SPE Journal ◽  
2021 ◽  
pp. 1-12
Author(s):  
Gang Hui ◽  
Shengnan Chen ◽  
Zhangxin Chen ◽  
Fei Gu ◽  
Mathab Ghoroori ◽  
...  

Summary The relationships among formation properties, fracturing operations, and induced earthquakes nucleated at distinctive moments and positions remain unclear. In this study, a complete data set on formations, seismicity, and fracturing treatments is collected in Fox Creek, Alberta, Canada. The data set is then used to characterize the induced seismicity and evaluate its susceptibility toward fracturing stimulations via integration of geology, geomechanics, and hydrology. Five mechanisms are identified to account for spatiotemporal activation of the nearby faults in Fox Creek, where all major events [with a moment magnitude (Mw) greater than 2.5] are caused by the increase in pore pressure and poroelastic stress during the fracturing operation. In addition, an integrated geological index (IGI) and a combined geomechanical index (CGI) are first proposed to indicate seismicity susceptibility, which is consistent with the spatial distribution of induced earthquakes. Finally, mitigation strategy results suggest that enlarging a hydraulic fracture-fault distance and decreasing a fracturing job size can reduce the risk of potential seismic activities.


2020 ◽  
Vol 58 (3) ◽  
Author(s):  
Ryan Schultz ◽  
Robert J. Skoumal ◽  
Michael R. Brudzinski ◽  
Dave Eaton ◽  
Brian Baptie ◽  
...  

Author(s):  
Alireza Babaie Mahani ◽  
Dmytro Malytskyy ◽  
Ryan Visser ◽  
Mark Hayes ◽  
Michelle Gaucher ◽  
...  

Abstract We present detailed velocity and density models for the Montney unconventional resource play in northeast British Columbia, Canada. The new models are specifically essential for robust hypocenter determination in the areas undergoing multistage hydraulic-fracturing operations and for detailed analysis of induced seismicity processes in the region. For the upper 4 km of the sedimentary structure, we review hundreds of well logs and select sonic and density logs from 19 locations to build the representative models. For depths below 4 km, we extend our models using data from the southern Alberta refraction experiment (Clowes et al., 2002). We provide one set of models for the entire Montney play along with two separated sets for the southern and northern areas. Specifically, the models for the southern and northern Montney play are based on logs located in and around the Kiskatinaw Seismic Monitoring and Mitigation Area and the North Peace Ground Motion Monitoring area, respectively. To demonstrate the usefulness of our detailed velocity model, we compare the hypocenter location of earthquakes that occurred within the Montney play as determined with our model and the simple two-layered model (CN01) routinely used by Natural Resources Canada. Locations obtained by our velocity model cluster more tightly with the majority of events having root mean square residual of <0.2  s compared with that of <0.4  s when the CN01 model is used. Cross sections of seismicity versus depth across the area also show significant improvements in the determination of focal depths. Our model results in a reasonable median focal depth of ∼2  km for events in this area, which is consistent with the completion depths of hydraulic-fracturing operations. In comparison, most solutions determined with the CN01 model have fixed focal depths (0 km) due to the lack of depth resolution.


2020 ◽  
Vol 222 (1) ◽  
pp. 189-206 ◽  
Author(s):  
Peter Niemz ◽  
Simone Cesca ◽  
Sebastian Heimann ◽  
Francesco Grigoli ◽  
Sebastian von Specht ◽  
...  

SUMMARY Understanding fracturing processes and the hydromechanical relation to induced seismicity is a key question for enhanced geothermal systems (EGS). Commonly massive fluid injection, predominately causing hydroshearing, are used in large-scale EGS but also hydraulic fracturing approaches were discussed. To evaluate the applicability of hydraulic fracturing techniques in EGS, six in situ, multistage hydraulic fracturing experiments with three different injection schemes were performed under controlled conditions in crystalline rock at the Äspö Hard Rock Laboratory (Sweden). During the experiments the near-field ground motion was continuously recorded by 11 piezoelectric borehole sensors with a sampling rate of 1 MHz. The sensor network covered a volume of 30×30×30 m around a horizontal, 28-m-long injection borehole at a depth of 410 m. To extract and characterize massive, induced, high-frequency acoustic emission (AE) activity from continuous recordings, a semi-automated workflow was developed relying on full waveform based detection, classification and location procedures. The approach extended the AE catalogue from 196 triggered events in previous studies to more than 19 600 located AEs. The enhanced catalogue, for the first time, allows a detailed analysis of induced seismicity during single hydraulic fracturing experiments, including the individual fracturing stages and the comparison between injection schemes. Beside the detailed study of the spatio-temporal patterns, event clusters and the growth of seismic clouds, we estimate relative magnitudes and b-values of AEs for conventional, cyclic progressive and dynamic pulse injection schemes, the latter two being fatigue hydraulic fracturing techniques. While the conventional fracturing leads to AE patterns clustered in planar regions, indicating the generation of a single main fracture plane, the cyclic progressive injection scheme results in a more diffuse, cloud-like AE distribution, indicating the activation of a more complex fracture network. For a given amount of hydraulic energy (pressure multiplied by injected volume) pumped into the system, the cyclic progressive scheme is characterized by a lower rate of seismicity, lower maximum magnitudes and significantly larger b-values, implying an increased number of small events relative to the large ones. To our knowledge, this is the first direct comparison of high resolution seismicity in a mine-scale experiment induced by different hydraulic fracturing schemes.


Sign in / Sign up

Export Citation Format

Share Document