3D Seismic-Wave Modeling with a Topographic Fluid–Solid Interface at the Sea Bottom by the Curvilinear-Grid Finite-Difference Method

Author(s):  
Yao-Chong Sun ◽  
Wei Zhang ◽  
Hengxin Ren ◽  
Xueyang Bao ◽  
Jian-Kuan Xu ◽  
...  

ABSTRACT The curvilinear-grid finite-difference method (FDM), which uses curvilinear coordinates to discretize the nonplanar interface geometry, is extended to simulate acoustic and seismic-wave propagation across the fluid–solid interface at the sea bottom. The coupled acoustic velocity-pressure and elastic velocity-stress formulation that governs wave propagation in seawater and solid earth is expressed in curvilinear coordinates. The formulation is solved on a collocated grid by alternative applications of forward and backward MacCormack finite difference within a fourth-order Runge–Kutta temporal integral scheme. The shape of a fluid–solid interface is discretized by a curvilinear grid to enable a good fit with the topographic interface. This good fit can obtain a higher numerical accuracy than the staircase approximation in the conventional FDM. The challenge is to correctly implement the fluid–solid interface condition, which involves the continuity of tractions and the normal component of the particle velocity, and the discontinuity (slipping) of the tangent component of the particle velocity. The fluid–solid interface condition is derived for curvilinear coordinates and explicitly implemented by a domain-decomposition technique, which splits a grid point on the fluid–solid interface into one grid point for the fluid wavefield and another one for the solid wavefield. Although the conventional FDM that uses effective media parameters near the fluid–solid interface to implicitly approach the boundary condition conflicts with the fluid–solid interface condition. We verify the curvilinear-grid FDM by conducting numerical simulations on several different models and compare the proposed numerical solutions with independent solutions that are calculated by the Luco-Apsel-Chen generalized reflection/transmission method and spectral-element method. Besides, the effects of a nonplanar fluid–solid interface and fluid layer on wavefield propagation are also investigated in a realistic seafloor bottom model. The proposed algorithm is a promising tool for wavefield propagation in heterogeneous media with a nonplanar fluid–solid interface.

Author(s):  
Ossian O’Reilly ◽  
Te-Yang Yeh ◽  
Kim B. Olsen ◽  
Zhifeng Hu ◽  
Alex Breuer ◽  
...  

ABSTRACT We developed a 3D elastic wave propagation solver that supports topography using staggered curvilinear grids. Our method achieves comparable accuracy to the classical fourth-order staggered grid velocity–stress finite-difference method on a Cartesian grid. We show that the method is provably stable using summation-by-parts operators and weakly imposed boundary conditions via penalty terms. The maximum stable timestep obeys a relationship that depends on the topography-induced grid stretching along the vertical axis. The solutions from the approach are in excellent agreement with verified results for a Gaussian-shaped hill and for a complex topographic model. Compared with a Cartesian grid, the curvilinear grid adds negligible memory requirements, but requires longer simulation times due to smaller timesteps for complex topography. The code shows 94% weak scaling efficiency up to 1014 graphic processing units.


Geophysics ◽  
1995 ◽  
Vol 60 (2) ◽  
pp. 327-340 ◽  
Author(s):  
N. Dai ◽  
A. Vafidis ◽  
E. R. Kanasewich

A particle velocity‐stress, finite‐difference method is developed for the simulation of wave propagation in 2-D heterogeneous poroelastic media. Instead of the prevailing second‐order differential equations, we consider a first‐order hyperbolic system that is equivalent to Biot’s equations. The vector of unknowns in this system consists of the solid and fluid particle velocity components, the solid stress components, and the fluid pressure. A MacCormack finite‐difference scheme that is fourth‐order accurate in space and second‐order accurate in time forms the basis of the numerical solutions for Biot’s hyperbolic system. An original analytic solution for a P‐wave line source in a uniform poroelastic medium is derived for the purposes of source implementation and algorithm testing. In simulations with a two‐layer model, additional “slow” compressional incident, transmitted, and reflected phases are recorded when the damping coefficient is small. This “slow” compressional wave is highly attenuated in porous media saturated by a viscous fluid. From the simulation we also verified that the attenuation mechanism introduced in Biot’s theory is of secondary importance for “fast” compressional and rotational waves. The existence of seismically observable differences caused by the presence of pores has been examined through synthetic experiments that indicate that amplitude variation with offset may be observed on receivers and could be diagnostic of the matrix and fluid parameters. This method was applied in simulating seismic wave propagation over an expanded steam‐heated zone in Cold Lake, Alberta in an area of enhanced oil recovery (EOR) processing. The results indicate that a seismic surface survey can be used to monitor thermal fronts.


2019 ◽  
Vol 218 (3) ◽  
pp. 1961-1982 ◽  
Author(s):  
Yao-Chong Sun ◽  
Hengxin Ren ◽  
Xu-Zhen Zheng ◽  
Na Li ◽  
Wei Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document