Joint Inversion of Active Sources and Ambient Noise for Near‐Surface Structures: A Case Study in the Balikun Basin, China

Author(s):  
Yinhe Luo ◽  
Jing Lin ◽  
Yingjie Yang ◽  
Limin Wang ◽  
Xiaozhou Yang ◽  
...  
2021 ◽  
Author(s):  
Julien Guillemoteau ◽  
Mauricio Arboleda Zapata ◽  
François-Xavier Simon ◽  
Guillaume Hulin ◽  
Laurent Deschodt ◽  
...  

<p>Frequency domain loop-loop electromagnetic induction (FDEM) soundings using decametric coil-separations and multi-frequency sources have been used for decades to investigate the electrical conductivity of top 100 m of the subsurface. The most common coil configurations include horizontal and vertical co-planar (HCP and VCP) setups, and the data recorded with a rather large station spacing are typically processed assuming 1D layered media. In many geological situations, the subsurface shows significant lateral contrasts in the electrical material properties, especially, in regoliths close to earth’s surface. Here, the HCP and VCP 2D/3D sensitivity functions show complex and rather extended lateral sensitivity patterns. Therefore, in presence of high lateral variations in the uppermost layers, assuming 1D layered media for interpreting HCP and VCP profiles is often not valid. Furthermore, using rather large lateral station spacings often hinders the identification (and removal) of 2D/3D effects. In consequence, the overall 1D FDEM profiling procedure is often considered to be less robust than other electrical imaging techniques (e.g., DC tomography) to depict near-surface horizontal variations of the subsurface.</p><p>In shallower FDEM applications focusing on the characterization of the uppermost soil layers, portable loop-loop FDEM sensors (e.g. rigid boom systems with coil separations < 6 m) are used to explore the subsurface electrical properties. Here, it is commonly known that the PERP configuration shows better lateral resolution and apparent conductivity maps closer to the actual conductivity distribution. The latter feature is in fact crucial for the validity and applicability of the 1D approximation. The robustness of the PERP configuration regarding the 1D assumption can be explained by its sensitivity pattern showing a preponderant sign and a rather focused pattern, centered approximately below the receiver.</p><p>In order to evaluate the benefit of the PERP configuration for systems with decametric coil separation, we present two case studies, where densely sampled profiles of 1D inversions of multi-frequency FDEM HCP and PERP data are compared to 2D ERT inverted models and additional independent borehole and rigid-boom FDEM sensor data. In the first case study, we explore a coastal environment near Bourbourg, France, where only minor lateral variations in the subsurface are expected. Here, our results demonstrate that a 1D inversion of HCP and PERP data result in similar models. In the second case study, we explore debris flow deposits close to Braunsbach, Germany, which are characterized by significant near-surface lateral variability. In this case, only the 1D inversion of our PERP data results in a pseudo 2D model being in agreement with the inverted 2D ERT data. These two case studies confirm that the 1D inversion of PERP data (only) yields results that are more robust regarding 2D/3D artifacts than the 1D inversion of HCP data, or a joint inversion of HCP/PERP data. In conclusion, we propose that the 1D inversion of spatially densely sampled multi-frequency PERP data should be further evaluated in view of characterizing the lateral variations within the first 20 m of the subsurface because it could represent an efficient alternative to ERT methods in selected applications.  </p>


2020 ◽  
Vol 222 (3) ◽  
pp. 1639-1655
Author(s):  
Xin Zhang ◽  
Corinna Roy ◽  
Andrew Curtis ◽  
Andy Nowacki ◽  
Brian Baptie

SUMMARY Seismic body wave traveltime tomography and surface wave dispersion tomography have been used widely to characterize earthquakes and to study the subsurface structure of the Earth. Since these types of problem are often significantly non-linear and have non-unique solutions, Markov chain Monte Carlo methods have been used to find probabilistic solutions. Body and surface wave data are usually inverted separately to produce independent velocity models. However, body wave tomography is generally sensitive to structure around the subvolume in which earthquakes occur and produces limited resolution in the shallower Earth, whereas surface wave tomography is often sensitive to shallower structure. To better estimate subsurface properties, we therefore jointly invert for the seismic velocity structure and earthquake locations using body and surface wave data simultaneously. We apply the new joint inversion method to a mining site in the United Kingdom at which induced seismicity occurred and was recorded on a small local network of stations, and where ambient noise recordings are available from the same stations. The ambient noise is processed to obtain inter-receiver surface wave dispersion measurements which are inverted jointly with body wave arrival times from local earthquakes. The results show that by using both types of data, the earthquake source parameters and the velocity structure can be better constrained than in independent inversions. To further understand and interpret the results, we conduct synthetic tests to compare the results from body wave inversion and joint inversion. The results show that trade-offs between source parameters and velocities appear to bias results if only body wave data are used, but this issue is largely resolved by using the joint inversion method. Thus the use of ambient seismic noise and our fully non-linear inversion provides a valuable, improved method to image the subsurface velocity and seismicity.


2007 ◽  
Vol 95 (1) ◽  
Author(s):  
Zs. Szántó ◽  
É. Svingor ◽  
I. Futó ◽  
L. Palcsu ◽  
M. Molnár ◽  
...  

As part of the site characterisation program for the near surface radioactive waste treatment and disposal facility (RWTDF) at Püspökszilágy, Hungary, water quality and environmental isotope investigations have been carried out. Water samples for major ion chemistry, tritium,The chemical composition of groundwaters presented a continuous transition from waters situated on one side to waters on the top and on the other slope of the disposal suggesting the mixing of the three hydrochemical “endmembers”.Most of δ


2016 ◽  
Vol 121 (11) ◽  
pp. 8217-8238 ◽  
Author(s):  
Kevin M. Ward ◽  
George Zandt ◽  
Susan L. Beck ◽  
Lara S. Wagner ◽  
Hernando Tavera

Sign in / Sign up

Export Citation Format

Share Document