The travel times of the longitudinal waves of the Logan and Blanca atomic explosions and their velocities in the upper mantle

1962 ◽  
Vol 52 (3) ◽  
pp. 519-526 ◽  
Author(s):  
I. Lehmann

abstract The P travel times of the Logan and Blanca atomic explosions are found to be consistent with an upper mantile structure having a discontinuity surface at about 215 km depth at which the velocity and the velocity gradient increase abruptly while the velocity varies only slightly or is constant above this depth.

1977 ◽  
Vol 67 (1) ◽  
pp. 33-42
Author(s):  
Mark E. Odegard ◽  
Gerard J. Fryer

Abstract Equations are presented which permit the calculation of distances, travel times and intensity ratios of seismic rays propagating through a spherical body with concentric layers having velocities which vary linearly with radius. In addition, a method is described which removes the infinite singularities in amplitude generated by second-order discontinuities in the velocity profile. Numerical calculations involving a reasonable upper mantle model show that the standard deviations of the errors for distance, travel time and intensity ratio are 0.0046°, 0.057 sec, and 0.04 dB, respectively. Computation time is short.


1975 ◽  
Vol 65 (6) ◽  
pp. 1787-1796
Author(s):  
Mansur A. Choudhury ◽  
Georges Poupinet ◽  
Guy Perrier

abstract Behavior of P, S and ScS residuals as well as those of differential travel times of ScS-P from the Jeffreys-Bullen tables are analyzed. The phases have been read from short-period records of the Antarctic station, Dumont d'Urville (DRV); the earthquakes originating in New Hebrides, Fiji-Tonga, and Banda Sea regions. P residuals from all regions show a mean value of about −1 sec. On the contrary, S and ScS residuals, well correlated among themselves, show important regional as well as focal-depth dependence. ScS-P residuals from shallow and intermediate shocks are largely positive for New Hebrides and largely negative for Banda Sea; those from intermediate shocks are moderately positive for Fiji-Tonga. The anomalies disappear at depths greater than about 200 km. Upper mantle shear velocity models are presented for the three regions. The models are discussed in relation to a sinking lithosphere.


1975 ◽  
Vol 11 (2) ◽  
pp. 109-118 ◽  
Author(s):  
A.L. Hales ◽  
K.J. Muirhead ◽  
J.M. Rynn ◽  
J.F. Gettrust

1969 ◽  
Vol 22 (5) ◽  
pp. 573 ◽  
Author(s):  
R Underwood

A reconnaissance seismic refraction study of the crust and upper mantle of Bass Strait and adjacent land was undertaken in 1966 under the sponsorship of the Geophysics Group of the Australian Institute of Physics. The shot locations and times, the station locations, distances, and first arrival travel times are presented. Analysis of these data is described; they indicate a P n velocity below 8 km sec-I. Time terms are less than expected and do not agree with previous work. Crustal thicknesses cannot be computed until studies of upper crustal structure are made. These, and several mantle refraction studies, are suggested for future work.


1970 ◽  
Vol 60 (6) ◽  
pp. 1921-1935
Author(s):  
B. M. Gurbuz

Abstract The aim of this paper is to investigate the velocity distribution and structure of the Earth's crust and upper mantle from the close collaboration of theory and experimental results of travel times and spectrum characteristics of body waves. The interpretation was based on 38 seismic records which were obtained from the “Project Early Rise” experiment during July 1966. The results refer to the area bounded by latitudes 49°W and 51°30′ and longitudes 93°W and 98°W. A least-squares analysis of the travel-time data was made and the uncertainties of the slopes, intercept times, and corresponding velocities were determined. The observed wide-angle reflections were used to calculate the root mean square velocities applying the T2 - X2 method. Depth calculations for the velocity discontinuities and seismic depth contour maps were made. A model was constructed, and the validity of the proposed new model was tested by comparing the observed travel times, spectrum-amplitude ratios, and relative phase shifts of body waves with theoretically expected values. Evidence is given for three discontinuities in the Earth's crust with velocities of 6.11 ± 0.01 km/sec, 6.8 ± 0.08 km/sec, and 7.10 ± 0.04 km/sec at average depths 18 ± 2 km and 25.5 ± 0.9 km. Velocities in the uppermost part of the mantle were determined as 7.90 ± 0.05 km/sec and 8.48 ± 0.05 km/sec with interfaces at the average depths of 34 ± 1 km, and 47 ± 1 km, respectively.


1968 ◽  
Vol 58 (6) ◽  
pp. 1879-1897
Author(s):  
K. L. Kaila ◽  
P. R. Reddy ◽  
Hari Narain

ABSTRACT P-wave travel times of 39 shallow earthquakes and three nuclear explosions with epicenters in the North in Himalayas, Tibet, China and USSR as recorded in Indian observatories have been analyzed statistically by the method of weighting observations. The travel times from Δ = 2° to 50° can be represented by four straight line segments indicating abrupt velocity changes around 19°, 22° and 33° respectively. The P-wave velocity at the top of the mantle has been found to be 8.31 ± 0.02 km/sec. Inferred upper mantle structure reveals three velocity discontinuities in the upper mantle at depths (below the crust) of 380 ± 20, 580 ± 50 and 1000 ± 120 km with velocities below the discontinuities as 9.47 ± 0.06, 10.15 ± 0.07 and 11.40 ± 0.08 km/sec respectively. The J-B residuals up to Δ = 19° are mostly negative varying from 1 to 10 seconds with a dependence on Δ values indicating a different upper mantle velocity in the Himalayan region as compared to that used by Jeffreys-Bullen in their tables (1940). Between 19° to 33° there is a reasonably good agreement between the J-B curve and the observation points. From Δ = 33° to 50° the J-B residuals are mostly positive with an average excess value of about 4 sec.


Sign in / Sign up

Export Citation Format

Share Document