Compact solutions for multiple scattered wave energy in time domain

1991 ◽  
Vol 81 (3) ◽  
pp. 1022-1029
Author(s):  
Yuehua Zeng
Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4083
Author(s):  
Kong ◽  
Liu ◽  
Su ◽  
Ao ◽  
Chen ◽  
...  

In this work the hydrodynamic performance of a novel wave energy converter configuration was analytically and numerically studied by combining a moonpool and a wave energy buoy, called the moonpool platform–wave energy buoy (MP–WEB). A potential flow, semi-analytical approach was adopted to assess the total (incident, diffraction, radiation) wave forces acting on the device, and the wave capture and energy efficiency performance of this configuration was assessed, both in the time and frequency domain. The performance of the two configurations, single float and double float, were analyzed and compared in terms of diffraction force, added mass radiation force, motion, and power in the frequency domain. Using an impulse response function-based (IRF) method, the frequency domain results were converted in the time domain. The same parameters in the time domain were derived and the main results were confirmed. Wave energy conversion efficiency was significantly increased due to the resonance phenomenon inside the moonpool.


2020 ◽  
Vol 8 (3) ◽  
pp. 171
Author(s):  
Fadia Ticona Rollano ◽  
Thanh Toan Tran ◽  
Yi-Hsiang Yu ◽  
Gabriel García-Medina ◽  
Zhaoqing Yang

Industry-specific tools for analyzing and optimizing the design of wave energy converters (WECs) and associated power systems are essential to advancing marine renewable energy. This study aims to quantify the influence of phase information on the device power output of a virtual WEC array. We run the phase-resolving wave model FUNWAVE-TVD (Total Variation Diminishing) to generate directional waves at the PacWave South site offshore from Newport, Oregon, where future WECs are expected to be installed for testing. The two broad cases presented correspond to mean wave climates during warm months (March–August) and cold months (September–February). FUNWAVE-TVD time series of sea-surface elevation are then used in WEC-Sim, a time domain numerical model, to simulate the hydrodynamic response of each device in the array and estimate their power output. For comparison, WEC-Sim is also run with wave energy spectra calculated from the FUNWAVE-TVD simulations, which do not retain phase information, and with wave spectra computed using the phase-averaged model Simulating WAves Nearshore (SWAN). The use of spectral data in WEC-Sim requires a conversion from frequency to time domain by means of random superposition of wave components, which are not necessarily consistent because of the linear assumption implicit in this method. Thus, power response is characterized by multiple realizations of the wave climates.


Author(s):  
Sung-Jae Kim ◽  
Weoncheol Koo ◽  
Moo-Hyun Kim

Abstract The aim of this paper is to evaluate the hydrodynamic performance of a heaving buoy type wave energy converter (WEC) and power take-off (PTO) system. To simulate the nonlinear behavior of the WEC with PTO system, a three-dimensional potential numerical wave tank (PNWT) was developed. The PNWT is a numerical analysis tool that can accurately reproduce experiments in physical wave tanks. The developed time-domain PNWT utilized the previously developed NWT technique and newly adopted the side wall damping area. The PNWT is based on boundary element method with constant panels. The mixed Eulerian-Lagrangian method (MEL) and acceleration potential approach were adopted to simulate the nonlinear behaviors of free-surface nodes associated with body motions. The PM spectrum as an irregular incident wave condition was applied to the input boundary. A floating or fixed type WEC structure was placed in the center of the computational domain. A hydraulic PTO system composed of a hydraulic cylinder, hydraulic motor and generator was modeled with approximate Coulomb damping force and applied to the WEC system. Using the integrated numerical model of the WEC with PTO system, nonlinear interaction of irregular waves, the WEC structure, and the PTO system were simulated in the time domain. The optimal hydraulic pressure of the PTO condition was predicted. The hydrodynamic performance of the WEC was evaluated by comparing the linear and nonlinear analytical results and highlighted the importance accounting for nonlinear free surfaces.


Author(s):  
Jiajun Song ◽  
Ossama Abdelkhalik ◽  
Shangyan Zou

Abstract This paper presents an optimization approach to design ax-isymmetric wave energy converters (WECs) based on a nonlinear hydrodynamic model. This paper shows optimal nonlinear shapes of buoy can be generated by combing basic shapes in an optimal sense. The time domain non-linear Froude-Krylov force can be computed for a complex buoy shape, by adopting analytical formulas of its basic shape components. The time domain Forude-Krylov force is decomposed into its dynamic and static components, and then contribute to the calculation of the excitation force and the hydrostatic force. A non-linear control is assumed in the form of the combination of linear and nonlinear damping terms. A variable size genetic algorithm (GA) optimization tool is developed to search for the optimal buoy shape along with the optimal control coefficients simultaneously. Chromosome of the GA tool is designed to improve computational efficiency and to leverage variable size genes to search for the optimal non-linear buoy shape. Different criteria of wave energy conversion can be implemented by the variable size GA tool. Simulation results presented in this paper show that it is possible to find non-linear buoy shapes and non-linear controllers that take advantage of non-linear hydrodynamics to improve energy harvesting efficiency with out adding reactive terms to the system.


Sign in / Sign up

Export Citation Format

Share Document