Determination of earthquake source parameters using a hybrid global search algorithm

1995 ◽  
Vol 85 (2) ◽  
pp. 516-524
Author(s):  
Stephen Hartzell ◽  
Pengcheng Liu

Abstract A hybrid global optimization algorithm using a combination of simulated annealing and downhill simplex methods is used to invert teleseismic body waves for earthquake source parameters. Time-domain constraints on the source-time function, inversion for double-couple parameters rather than moment tensor elements, and consideration of multiple sources lead to a nonlinear and multimodal problem, in which the objective function contains many local minima. Traditional approaches that linearize the problem and use iterative least squares are dependent on the starting model and the order in which multiple sources are processed, and can converge to a local minimum. Also, grid searches are impractical for the number of parameters we treat simultaneously. The hybrid global method provides an attractive alternative because it converges to the global minimum of a prescribed objective function and can be used to invert for multiple sources simultaneously. Model parameter constraints are easy to incorporate into the global search process, if they are desired. A multiple point-source parameterization of the 1992 Landers, California, earthquake is used as an example of the inversion method. Rupture in this earthquake occurred along three main fault segments: the Johnson Valley fault, the Homestead fault, and the Emerson/Rock Creek faults. We invert for the strike, dip, and rake of each source, the time separation of the sources, and the farfield source-time function of each source. Parameters obtained from the inversion are consistent with field observations and the results of other investigations. Strikes vary consistently with the trend of the surface ruptures. The dip is near 90° along the entire length of the rupture, and the rake is nearly pure right-lateral strike slip. The estimated moment is 7.6 × 1026 dyne-cm. The continuity of the moment release across the junction of the Homestead and Emerson faults suggests that these two faults may be more continuous at depth than at the surface. Moment release in the transition from the Johnson Valley to the Homestead faults is complex, indicating a complicated time history of faulting and a less direct relationship between the primary mapped faults.

2013 ◽  
Vol 5 (2) ◽  
pp. 1125-1162 ◽  
Author(s):  
S. C. Stähler ◽  
K. Sigloch

Abstract. Seismic source inversion is a non-linear problem in seismology where not just the earthquake parameters themselves, but also estimates of their uncertainties are of great practical importance. Probabilistic source inversion (Bayesian inference) is very adapted to this challenge, provided that the parameter space can be chosen small enough to make Bayesian sampling computationally feasible. We propose a framework for PRobabilistic Inference of Source Mechanisms (PRISM) that parameterises and samples earthquake depth, moment tensor, and source time function efficiently by using information from previous non-Bayesian inversions. The source time function is expressed as a weighted sum of a small number of empirical orthogonal functions, which were derived from a catalogue of >1000 STFs by a principal component analysis. We use a likelihood model based on the cross-correlation misfit between observed and predicted waveforms. The resulting ensemble of solutions provides full uncertainty and covariance information for the source parameters, and permits to propagate these source uncertainties into travel time estimates used for seismic tomography. The computational effort is such that routine, global estimation of earthquake mechanisms and source time functions from teleseismic broadband waveforms is feasible.


2021 ◽  
Author(s):  
Itzhak Lior ◽  
Anthony Sladen ◽  
Diego Mercerat ◽  
Jean-Paul Ampuero ◽  
Diane Rivet ◽  
...  

<p>The use of Distributed Acoustic Sensing (DAS) presents unique advantages for earthquake monitoring compared with standard seismic networks: spatially dense measurements adapted for harsh environments and designed for remote operation. However, the ability to determine earthquake source parameters using DAS is yet to be fully established. In particular, resolving the magnitude and stress drop, is a fundamental objective for seismic monitoring and earthquake early warning. To apply existing methods for source parameter estimation to DAS signals, they must first be converted from strain to ground motions. This conversion can be achieved using the waves’ apparent phase velocity, which varies for different seismic phases ranging from fast body-waves to slow surface- and scattered-waves. To facilitate this conversion and improve its reliability, an algorithm for slowness determination is presented, based on the local slant-stack transform. This approach yields a unique slowness value at each time instance of a DAS time-series. The ability to convert strain-rate signals to ground accelerations is validated using simulated data and applied to several earthquakes recorded by dark fibers of three ocean-bottom telecommunication cables in the Mediterranean Sea. The conversion emphasizes fast body-waves compared to slow scattered-waves and ambient noise, and is robust even in the presence of correlated noise and varying wave propagation directions. Good agreement is found between source parameters determined using converted DAS waveforms and on-land seismometers for both P- and S-wave records. The demonstrated ability to resolve source parameters using P-waves on horizontal ocean-bottom fibers is key for the implementation of DAS based earthquake early warning, which will significantly improve hazard mitigation capabilities for offshore and tsunami earthquakes.</p>


2015 ◽  
Vol 22 (5) ◽  
pp. 625-632
Author(s):  
P. A. Toledo ◽  
S. R. Riquelme ◽  
J. A. Campos

Abstract. We study the main parameters of earthquakes from the perspective of the first digit phenomenon: the nonuniform probability of the lower first digit different from 0 compared to the higher ones. We found that source parameters like coseismic slip distributions at the fault and coseismic inland displacements show first digit anomaly. We also found the tsunami runups measured after the earthquake to display the phenomenon. Other parameters found to obey first digit anomaly are related to the aftershocks: we show that seismic moment liberation and seismic waiting times also display an anomaly. We explain this finding by invoking a self-organized criticality framework. We demonstrate that critically organized automata show the first digit signature and we interpret this as a possible explanation of the behavior of the studied parameters of the Tohoku earthquake.


Author(s):  
Barry Hirshorn ◽  
Stuart Weinstein ◽  
Dailin Wang ◽  
Kanoa Koyanagi ◽  
Nathan Becker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document