Image-guided modeling, fabrication and micromechanical analysis of bone and heterogeneous structure

2021 ◽  
Author(s):  
Zhibin Fang
2018 ◽  
Vol 1 (2) ◽  
pp. 2
Author(s):  
Chiung Chyi Shen

Use of pedicle screws is widespread in spinal surgery for degenerative, traumatic, and oncological diseases. The conventional technique is based on the recognition of anatomic landmarks, preparation and palpation of cortices of the pedicle under control of an intraoperative C-arm (iC-arm) fluoroscopy. With these conventional methods, the median pedicle screw accuracy ranges from 86.7% to 93.8%, even if perforation rates range from 21.1% to 39.8%.The development of novel intraoperative navigational techniques, commonly referred to as image-guided surgery (IGS), provide simultaneous and multiplanar views of spinal anatomy. IGS technology can increase the accuracy of spinal instrumentation procedures and improve patient safety. These systems, such as fluoroscopy-based image guidance ("virtual fluoroscopy") and computed tomography (CT)-based computer-guidance systems, have sensibly minimized risk of pedicle screw misplacement, with overall perforation rates ranging from between 14.3% and 9.3%, respectively."Virtual fluoroscopy" allows simultaneous two-dimensional (2D) guidance in multiple planes, but does not provide any axial images; quality of images is directly dependent on the resolution of the acquired fluoroscopic projections. Furthermore, computer-assisted surgical navigation systems decrease the reliance on intraoperative imaging, thus reducing the use of intraprocedure ionizing radiation. The major limitation of this technique is related to the variation of the position of the patient from the preoperative CT scan, usually obtained before surgery in a supine position, and the operative position (prone). The next technological evolution is the use of an intraoperative CT (iCT) scan, which would allow us to solve the position-dependent changes, granting a higher accuracy in the navigation system. 


2020 ◽  
Vol 44 (3) ◽  
pp. 22-36
Author(s):  

Практика показывает, что для сварных конструкций, эксплуатируемых в условиях Крайнего Севера необходимо уделять внимание работоспособности сварных соединений при низких температурах. Металл сварных соединений в процессе воздействия обработки изменяет свои свойства, снижается ударная вязкость, образуется гетерогенная структура с большой степенью разнозернистости. Чтобы оценивать и иметь возможность правильно контролировать термическое воздействие и последствия сварочного процесса, требуется решить задачу аналитического определения ударной вязкости для всех зон сварного соединения. В настоящей статье представлен инженерный метод оценки ударной вязкости, применимый для любой зоны сварного соединения, в которой имеется острый или особый концентратор напряжений – трещина. Разработанный аналитический метод расчета ударной вязкости отражает качественную и количественную картину взаимосвязи структурно-механических характеристик и работы развития трещины в диапазоне температур 77…300 К. Предложенная схематизация зависимости критического коэффициента интенсивности напряжений от температуры позволила найти коэффициенты, характеризующие свойства материала, и выполнить расчеты изменения предела текучести и предела прочности от температуры эксплуатации. Построены графики зависимости работы развития трещины от температуры эксплуатации для сталей 15ГС и 17ГС, сравнение которых с экспериментальными данными показывает удовлетворительное согласование. Найдено, что при напряжениях предела выносливости отношение работы развития трещины к критической длине трещины постоянно, не зависит от температуры и для сталей 15ГС и 17ГС равно около 10. Ключевые слова: ударная вязкость, работа разрушения, коэффициент интенсивности напряжений, трещина, феррито-перлитная сталь, зона термического влияния. For welded structures under operation in the Far North, attention must be paid to the performance of welded joints at low temperatures. The properties of metal of welded joints are changed in the process of treatment, its toughness decreases, and a heterogeneous structure with a large range of different grain sizes is formed. In order to evaluate and be able to correctly control the thermal effect and the consequences of the welding process, it is necessary to solve the problem of analytical determination of impact strength for all zones of the welded joint. The paper presents an engineering method for evaluation of the impact strength applicable to any area of the welded joint in which there is a sharp or super sharp stress concentrator – a crack. The developed analytical method for calculating the impact strength reflects a qualitative and quantitative codependency of structural and mechanical characteristics and the process of crack development in the temperature range of 77–300 K. The proposed schematization of dependence of the critical coefficient of stress intensity on the temperature made it possible to find coefficients characterizing the properties of the material and to perform calculations of changes in yield strength and tensile strength on operating temperature. Graphs of the crack development process dependency on the operating temperature for 15ГС and 17ГС steels were constructed, and their comparison with experimental data displays satisfactory agreement. It was found that at endurance limit stresses, the ratio of the crack development process to the critical crack length is constant, non-dependent on temperature, and is equal to 10 for 15ГС and 17ГС steels. Keywords: impact strength, fracture work, stress intensity factor, crack, ferrite-pearlite steel, heat affected zone, steel tempering.


2020 ◽  
Vol 4 ◽  
pp. 9
Author(s):  
Salman Mirza ◽  
Shahnawaz Ansari

We present a case of a 72-year-old male with an abdominal aortic aneurysm status post-endovascular aneurysm repair (EVAR). Follow-up imaging demonstrated an enlarging type II endoleak and attempts at transarterial coil embolization of the inferior mesenteric artery were unsuccessful. The patient underwent image-guided percutaneous translumbar type II endoleak repair using XperGuide (Philips, Andover, MA USA).


2020 ◽  
Vol 86 (7) ◽  
pp. 45-54
Author(s):  
A. M. Lepikhin ◽  
N. A. Makhutov ◽  
Yu. I. Shokin

The probabilistic aspects of multiscale modeling of the fracture of heterogeneous structures are considered. An approach combining homogenization methods with phenomenological and numerical models of fracture mechanics is proposed to solve the problems of assessing the probabilities of destruction of structurally heterogeneous materials. A model of a generalized heterogeneous structure consisting of heterogeneous materials and regions of different scales containing cracks and crack-like defects is formulated. Linking of scales is carried out using kinematic conditions and multiscale principle of virtual forces. The probability of destruction is formulated as the conditional probability of successive nested fracture events of different scales. Cracks and crack-like defects are considered the main sources of fracture. The distribution of defects is represented in the form of Poisson ensembles. Critical stresses at the tops of cracks are described by the Weibull model. Analytical expressions for the fracture probabilities of multiscale heterogeneous structures with multilevel limit states are obtained. An approach based on a modified Monte Carlo method of statistical modeling is proposed to assess the fracture probabilities taking into account the real morphology of heterogeneous structures. A feature of the proposed method is the use of a three-level fracture scheme with numerical solution of the problems at the micro, meso and macro scales. The main variables are generalized forces of the crack propagation and crack growth resistance. Crack sizes are considered generalized coordinates. To reduce the dimensionality, the problem of fracture mechanics is reformulated into the problem of stability of a heterogeneous structure under load with variations of generalized coordinates and analysis of the virtual work of generalized forces. Expressions for estimating the fracture probabilities using a modified Monte Carlo method for multiscale heterogeneous structures are obtained. The prospects of using the developed approaches to assess the fracture probabilities and address the problems of risk analysis of heterogeneous structures are shown.


Sign in / Sign up

Export Citation Format

Share Document