Image-Guided Spinal Surgery and Robotics in MIS: Where Are We Now?

2018 ◽  
Vol 1 (2) ◽  
pp. 2
Author(s):  
Chiung Chyi Shen

Use of pedicle screws is widespread in spinal surgery for degenerative, traumatic, and oncological diseases. The conventional technique is based on the recognition of anatomic landmarks, preparation and palpation of cortices of the pedicle under control of an intraoperative C-arm (iC-arm) fluoroscopy. With these conventional methods, the median pedicle screw accuracy ranges from 86.7% to 93.8%, even if perforation rates range from 21.1% to 39.8%.The development of novel intraoperative navigational techniques, commonly referred to as image-guided surgery (IGS), provide simultaneous and multiplanar views of spinal anatomy. IGS technology can increase the accuracy of spinal instrumentation procedures and improve patient safety. These systems, such as fluoroscopy-based image guidance ("virtual fluoroscopy") and computed tomography (CT)-based computer-guidance systems, have sensibly minimized risk of pedicle screw misplacement, with overall perforation rates ranging from between 14.3% and 9.3%, respectively."Virtual fluoroscopy" allows simultaneous two-dimensional (2D) guidance in multiple planes, but does not provide any axial images; quality of images is directly dependent on the resolution of the acquired fluoroscopic projections. Furthermore, computer-assisted surgical navigation systems decrease the reliance on intraoperative imaging, thus reducing the use of intraprocedure ionizing radiation. The major limitation of this technique is related to the variation of the position of the patient from the preoperative CT scan, usually obtained before surgery in a supine position, and the operative position (prone). The next technological evolution is the use of an intraoperative CT (iCT) scan, which would allow us to solve the position-dependent changes, granting a higher accuracy in the navigation system. 

2014 ◽  
Vol 36 (3) ◽  
pp. E7 ◽  
Author(s):  
Mark A. Rivkin ◽  
Steven S. Yocom

Object Thoracolumbar instrumentation has experienced a dramatic increase in utilization over the last 2 decades. However, pedicle screw fixation remains a challenging undertaking, with suboptimal placement contributing to postoperative pain, neurological deficit, vascular complications, and return to the operating suite. Image-guided spinal surgery has substantially improved the accuracy rates for these procedures. However, it is not without technical challenges and a learning curve for novice operators. The authors present their experience with the O-arm intraoperative imaging system and share the lessons they learned over nearly 5 years. Methods The authors performed a retrospective chart review of 270 consecutive patients who underwent thoracolumbar pedicle screw fixation utilizing the O-arm imaging system in conjunction with StealthStation navigation between April 2009 and September 2013 at a single tertiary care center; 266 of the patients underwent CT scanning on postoperative Day 1 to evaluate hardware placement. The CT scans were interpreted prospectively by 3 neuroradiologists as part of standard work flow and retrospectively by 2 neurosurgeons and a senior resident. Pedicle screws were evaluated for breaches according to the 3-tier classification proposed by Mirza et al. Results Of 270 patients, 266 (98.5%) were included in the final analysis based on the presence of a postoperative CT scan. Overall, 1651 pedicle screws were placed in 266 patients and yielded a 5.3% breach rate; 213 thoracic and 1438 lumbosacral pedicle screws were inserted with 6.6% and 5.1% breach rates, respectively. Of the 87 suboptimally placed screws, there were 13 Grade 1, 16 Grade 2, and 12 Grade 3 misses as well as 46 anterolateral or “tip-out” perforations at L-5. Four patients (1.5%) required a return to the operating room for pedicle screw revision, 2 of whom experienced transient radicular symptoms and 2 remained asymptomatic. Interestingly, the pedicle breach rate was higher than anticipated at 13.21% for the 30 patients over the initial 6-month period with the O-arm. After certain modifications to the authors' technique, the subsequent 30 patients experienced a statistically significant decrease in breach rate at 5.6% (p = 0.014). Conclusions Image-guided spinal surgery can be a great option in the operating room and provides high pedicle screw accuracy rates. With numerous systems commercially available, it is important to develop a systematic approach regardless of the technology in question. There is a learning curve for surgeons unfamiliar with image guidance that should be recognized and appreciated when transitioning to navigation-assisted spinal surgery. In fact, the authors' experience with a large patient cohort suggests that this learning curve may be more significant than previously reported.


Author(s):  
L Neuburger ◽  
Y Cheng ◽  
DR Fourney

Background: Image-guided navigation is routinely used in spine surgery to improve placement of pedicle screws. However, most reports have relied on two-dimensional X-ray evaluation to determine accuracy of screw positioning. In this study, computed tomography (CT) and O-arm imaging enabled a detailed three-dimensional comparison of screw placement. The objective was to compare the accuracy of pedicle screw placement with intraoperative X-ray versus O-arm image-guided navigation. Methods: This was a retrospective analysis of image-guided pedicle screw placement in patients who underwent spinal instrumentation. Post-operative CT and O-arm imaging allowed grading of screw accuracy based on pedicle breaches. Clinical outcomes included patient and operative factors. Results: Pedicle screws were placed in 208 patients (1116 screws). Three-dimensional O-arm guidance was utilized for 126 patients, while the remainder underwent two-dimensional X-ray imaging and post-operative CT assessment. O-arm navigation was associated with improved pedicle screw accuracy: pedicle breaches were more likely to be low grade (odds ratio 2.84, p=0.001) and less likely to be medium grade (odds ratio 0.35, p=0.007) or high grade (odds ratio 0.31, p=0.025). Conclusions: This study provided a detailed comparison of surgical accuracy with X-ray versus O-arm guidance. Navigation with O-arm imaging is associated with benefits in spinal instrumentation, without impacting operative risks for patients.


2014 ◽  
Vol 36 (3) ◽  
pp. E3 ◽  
Author(s):  
Gazanfar Rahmathulla ◽  
Eric W. Nottmeier ◽  
Stephen M. Pirris ◽  
H. Gordon Deen ◽  
Mark A. Pichelmann

Spinal instrumentation has made significant advances in the last two decades, with transpedicular constructs now widely used in spinal fixation. Pedicle screw constructs are routinely used in thoracolumbar-instrumented fusions, and in recent years, the cervical spine as well. Three-column fixations with pedicle screws provide the most rigid form of posterior stabilization. Surgical landmarks and fluoroscopy have been used routinely for pedicle screw insertion, but a number of studies reveal inaccuracies in placement using these conventional techniques (ranging from 10% to 50%). The ability to combine 3D imaging with intraoperative navigation systems has improved the accuracy and safety of pedicle screw placement, especially in more complex spinal deformities. However, in the authors' experience with image guidance in more than 1500 cases, several potential pitfalls have been identified while using intraoperative spinal navigation that could lead to suboptimal results. This article summarizes the authors' experience with these various pitfalls using spinal navigation, and gives practical tips on their avoidance and management.


2017 ◽  
Vol 01 (04) ◽  
pp. 317-334
Author(s):  
Jan-Sven Jarvers ◽  
Ulrich Spiegl ◽  
Stefan Glasmacher ◽  
Christoph Heyde ◽  
Christoph Josten

Abstract Importance of Navigation Navigation and intraoperative imaging have undergone an enormous development in recent years. By using intraoperative navigation, the precision of pedicle screw implantation can be increased in the sense of patient safety. Especially in the case of complex defects or tumor diseases, navigation is a decisive aid. As a result of the constantly improved technology, the requirements for reduced radiation exposure and intraoperative control can also be met. The high costs of the devices can be amortized, for example by a reduced number of revisions. This overview presents the principles of navigation in spinal surgery and the advantages and disadvantages of the different navigation procedures.


2014 ◽  
Vol 36 (3) ◽  
pp. E5 ◽  
Author(s):  
Kern H. Guppy ◽  
Indro Chakrabarti ◽  
Amit Banerjee

Imaging guidance using intraoperative CT (O-arm surgical imaging system) combined with a navigation system has been shown to increase accuracy in the placement of spinal instrumentation. The authors describe 4 complex upper cervical spine cases in which the O-arm combined with the StealthStation surgical navigation system was used to accurately place occipital screws, C-1 screws anteriorly and posteriorly, C-2 lateral mass screws, and pedicle screws in C-6. This combination was also used to navigate through complex bony anatomy altered by tumor growth and bony overgrowth. The 4 cases presented are: 1) a developmental deformity case in which the C-1 lateral mass was in the center of the cervical canal causing cord compression; 2) a case of odontoid compression of the spinal cord requiring an odontoidectomy in a patient with cerebral palsy; 3) a case of an en bloc resection of a C2–3 chordoma with instrumentation from the occiput to C-6 and placement of C-1 lateral mass screws anteriorly and posteriorly; and 4) a case of repeat surgery for a non-union at C1–2 with distortion of the anatomy and overgrowth of the bony structure at C-2.


2021 ◽  
pp. 105566562110577
Author(s):  
Yuying Zhang ◽  
Jiawei Dai ◽  
Xiazhou Fu ◽  
Jiegang Yang ◽  
Yuchuan Fu ◽  
...  

Objectives: To present the use of dynamic navigation system in the repair of alveolar cleft. Patients and Participants: A total of three non-syndromic patients with unilateral alveolar cleft were involved in this study. Real-time computer-aided navigation were used to achieve restoration and reconstruction with standardized surgical technique. Methods: With the individual virtual 3-dimensional (3-D) modeling based on computed tomography (CT) data, preoperative planning and surgical simulation were carried out with the navigation system. During preoperative virtual planning, the defect volume or the quantity of graft is directly assessed at the surgical region. With the use of this system, the gingival periosteum flap incision can be tracked in real-time, and the bone graft can be navigated under the guidance of the 3-D views until it matches the preoperatively planned position. Results: Three patients with alveolar cleft were successfully performed under navigation guidance. Through the model alignment procedure, accurate matches between the actual intraoperative position and the CT images were achieved within the systematic error of 0.3 mm. The grafted bone was implanted according to the preoperative plan with the aid of instrument- and probe-based navigation. All the patients were healed well without serious complications. Conclusions: These findings suggest that image-guided surgical navigation, including preoperative planning, surgical simulation, postoperative assessment, and computer-assisted navigation was feasible and yielded good clinical outcomes. Clinical relevance: This dynamic navigation could be proved to be a valuable option for this complicated surgical procedure in the management of alveolar cleft repair.


2019 ◽  
Vol 18 (5) ◽  
pp. 496-502 ◽  
Author(s):  
Erik Edström ◽  
Gustav Burström ◽  
Rami Nachabe ◽  
Paul Gerdhem ◽  
Adrian Elmi Terander

Abstract BACKGROUND Treatment of several spine disorders requires placement of pedicle screws. Detailed 3-dimensional (3D) anatomic information facilitates this process and improves accuracy. OBJECTIVE To present a workflow for a novel augmented-reality-based surgical navigation (ARSN) system installed in a hybrid operating room for anatomy visualization and instrument guidance during pedicle screw placement. METHODS The workflow includes surgical exposure, imaging, automatic creation of a 3D model, and pedicle screw path planning for instrument guidance during surgery as well as the actual screw placement, spinal fixation, and wound closure and intraoperative verification of the treatment results. Special focus was given to process integration and minimization of overhead time. Efforts were made to manage staff radiation exposure avoiding the need for lead aprons. Time was kept throughout the procedure and subdivided to reflect key steps. The navigation workflow was validated in a trial with 20 cases requiring pedicle screw placement (13/20 scoliosis). RESULTS Navigated interventions were performed with a median total time of 379 min per procedure (range 232-548 min for 4-24 implanted pedicle screws). The total procedure time was subdivided into surgical exposure (28%), cone beam computed tomography imaging and 3D segmentation (2%), software planning (6%), navigated surgery for screw placement (17%) and non-navigated instrumentation, wound closure, etc (47%). CONCLUSION Intraoperative imaging and preparation for surgical navigation totaled 8% of the surgical time. Consequently, ARSN can routinely be used to perform highly accurate surgery potentially decreasing the risk for complications and revision surgery while minimizing radiation exposure to the staff.


Author(s):  
Anthony M. DiGioia ◽  
Frederic Picard ◽  
Branislav Jaramaz ◽  
David Sell ◽  
James C. Moody ◽  
...  

Abstract In this paper we describe a surgical navigation system named HipNav (Hip-Navigation) for THR and KneeNav (Knee-Navigation) for TKR with an emphasis on using these systems as a real time intraoperative measurement tool (these enabling technologies are the surgical toolbox of the future). This approach will permit the direct comparison of patient outcomes with measurable surgical techniques.


2003 ◽  
Vol 99 (3) ◽  
pp. 324-329 ◽  
Author(s):  
Langston T. Holly ◽  
Kevin T. Foley

✓ The authors sought to evaluate the feasibility and accuracy of three-dimensional (3D) fluoroscopic guidance for percutaneous placement of thoracic and lumbar pedicle screws in three cadaveric specimens. After attaching a percutaneous dynamic reference array to the surgical anatomy, an isocentric C-arm fluoroscope was used to obtain images of the region of interest. Light-emitting diodes attached to the C-arm unit were tracked using an electrooptical camera. The image data set was transferred to the image-guided workstation, which performed an automated registration. Using the workstation display, pedicle screw trajectories were planned. An image-guided drill guide was passed through a stab incision, and this was followed by sequential image-guided pedicle drilling, tapping, and screw placement. Pedicle screws of various diameters (range 4–6.5 mm) were placed in all pedicles greater than 4 mm in diameter. Postoperatively, thin-cut computerized tomography scans were obtained to determine the accuracy of screw placement. Eighty-nine (94.7%) of 94 percutaneous screws were placed completely within the cortical pedicle margins, including all 30 lumbar screws (100%) and 59 (92%) of 64 thoracic screws. The mean diameter of all thoracic pedicles was 6 mm (range 2.9–11 mm); the mean diameter of the five pedicles in which wall violations occurred was 4.6 mm (range 4.1–6.3 mm). Two of the violations were less than 2 mm beyond the cortex; the others were between 2 and 3 mm. Coupled with an image guidance system, 3D fluoroscopy allows highly accurate spinal navigation. Results of this study suggest that this technology will facilitate the application of minimally invasive techniques to the field of spine surgery.


Sarcoma ◽  
2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Pierre-Louis Docquier ◽  
Laurent Paul ◽  
Olivier Cartiaux ◽  
Christian Delloye ◽  
Xavier Banse

Pelvic sarcoma is associated with a relatively poor prognosis, due to the difficulty in obtaining an adequate surgical margin given the complex pelvic anatomy. Magnetic resonance imaging and computerized tomography allow valuable surgical resection planning, but intraoperative localization remains hazardous. Surgical navigation systems could be of great benefit in surgical oncology, especially in difficult tumor location; however, no commercial surgical oncology software is currently available. A customized navigation software was developed and used to perform a synovial sarcoma resection and allograft reconstruction. The software permitted preoperative planning with defined target planes and intraoperative navigation with a free-hand saw blade. The allograft was cut according to the same planes. Histological examination revealed tumor-free resection margins. Allograft fitting to the pelvis of the patient was excellent and allowed stable osteosynthesis. We believe this to be the first case of combined computer-assisted tumor resection and reconstruction with an allograft.


Sign in / Sign up

Export Citation Format

Share Document