scholarly journals Mitochondrial Phylogeny and Population Structure of Pakistani Dromedary Camel (Camelus dromedarius)

2021 ◽  
Vol 25 (05) ◽  
pp. 981-984
Author(s):  
Abdul Fathi

Dromedary camels (Camelus dromedarius) are one of the most important livestock species mainly used for milk and meat production in semi-arid and hot-desert expanses of the Arabian-Peninsula, Africa, and Southwest Asia. This study investigated the genetic diversity and population structure within and between eight dromedary camel breeds (n = 210) inhabiting Balochistan province, Pakistan, by mitochondrial cytochrome b (Cyt b). Sequences (1140 bp) analysis showed a total of 18 variable sites resulting in 16 haplotypes. The average haplotype and nucleotide diversities were Hd = 0.484 ± 0.051 and π = 0.00272 respectively. Phylogenetic analysis showed different clusters for camelids. The neutrality tests did not support the population demographic expansion for these camel breeds. Based on these results, we suggest that an imperative genetic management and breeding strategies are required for the effective conservation of this species. © 2021 Friends Science Publishers

2011 ◽  
Vol 23 (3) ◽  
pp. 438 ◽  
Author(s):  
J. A. Skidmore ◽  
M. Billah

The aim of the present study was to investigate the use of exogenous progesterone and equine chorionic gonadotrophin (eCG) in non-ovulated and ovulated, asynchronous dromedary camel recipients being prepared for an embryo transfer programme. The uteri of 12 mated donor camels were flushed non-surgically 7 days after ovulation and 42 embryos were recovered. In Experiment 1, 16 embryos were transferred non-surgically to recipients on Day 3 or 4 after ovulation (ov+3 and ov+4, respectively). Each recipient received a daily dose of 75 mg, i.m., progesterone-in-oil from 2 days before embryo transfer until 6 days after ovulation. Thereafter, the progesterone dose was reduced to 50 mg on Day 7 and finally to 25 mg day–1 on Days 8 and 9. Nine of 16 recipients (56%; ov+3, n = 4; ov+4, n = 5) became pregnant compared with none of eight non-progesterone treated controls, into which embryos were transferred on Day 4 after ovulation. In Experiment 2, 18 non-ovulated recipients received 75 mg, i.m., progesterone-in-oil daily from 3 days before until 12 days after non-surgical transfer of a Day 7 blastocyst, at which time pregnancy was diagnosed by ultrasonography. All pregnant recipients continued to receive 75 mg progesterone-in-oil daily for a further 6 days, when each camel received 2000 IU, i.m., eCG. Progesterone treatment was then reduced to 50 mg day–1 and, when a follicle(s) ≥1.3 cm in diameter were present in the ovaries, each animal received 20 μg buserelin to induce ovulation. Once the corpora lutea had developed, progesterone treatment was reduced to 25 mg day–1 for a final 3 days. Fourteen of 18 recipients (78%) became pregnant and seven of these (50%) remained pregnant after eCG treatment. Of the seven pregnancies that were lost, two were lost before eCG treatment, two did not respond to eCG treatment and three responded to eCG treatment and ovulated, but lost their pregnancies 6–8 days after the last progesterone injection.


2014 ◽  
Vol 281 (1795) ◽  
pp. 20141558 ◽  
Author(s):  
Marie Louis ◽  
Michael C. Fontaine ◽  
Jérôme Spitz ◽  
Erika Schlund ◽  
Willy Dabin ◽  
...  

Environmental conditions can shape genetic and morphological divergence. Release of new habitats during historical environmental changes was a major driver of evolutionary diversification. Here, forces shaping population structure and ecotype differentiation (‘pelagic’ and ‘coastal’) of bottlenose dolphins in the North-east Atlantic were investigated using complementary evolutionary and ecological approaches. Inference of population demographic history using approximate Bayesian computation indicated that coastal populations were likely founded by the Atlantic pelagic population after the Last Glacial Maxima probably as a result of newly available coastal ecological niches. Pelagic dolphins from the Atlantic and the Mediterranean Sea likely diverged during a period of high productivity in the Mediterranean Sea. Genetic differentiation between coastal and pelagic ecotypes may be maintained by niche specializations, as indicated by stable isotope and stomach content analyses, and social behaviour. The two ecotypes were only weakly morphologically segregated in contrast to other parts of the World Ocean. This may be linked to weak contrasts between coastal and pelagic habitats and/or a relatively recent divergence. We suggest that ecological opportunity to specialize is a major driver of genetic and morphological divergence. Combining genetic, ecological and morphological approaches is essential to understanding the population structure of mobile and cryptic species.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10274 ◽  
Author(s):  
Mirella Pupo Santos ◽  
João V.S. Rabelo Araujo ◽  
Arthur V. Sant’anna Lopes ◽  
Julio Cesar Fiorio Vettorazzi ◽  
Marcela Santana Bastos Boechat ◽  
...  

Background Two endemic lycophyte species Isoetes cangae and Isoetes serracarajensis have been recently described in the State of Pará in the Amazon forest located in northern Brazil. Isoetes L. has survived through three mass extinctions. Plants are considered small-sized, heterosporous, and can display a great diversity of physiological adaptations to different environments. Thus, the current study aimed to estimate the genetic variation of the populations of I. cangae and I. serracarajensis to generate information about their different mechanisms for survival at the same geographical location that could point to different reproductive, adaptative and dispersal strategies and should be considered for effective conservation strategies. Methods The genetic diversity and population structure of I. cangae and I. serracarajensis were investigated using Inter Simple Sequence Repeat (ISSR) molecular markers. Total genomic DNA was isolated, and the genetic diversity parameters were calculated. Results The sixteen primers produced 115 reproducible bands, 87% of which were polymorphic. A high level of polymorphic loci (81.74% and 68.48%) and a high Shannon index (Sh = 0.376 and 0.289) were observed for I. cangae and I. serracarajensis, respectively. The coefficient of genetic differentiation between population areas (GST) showed a higher value in I. serracarajensis (0.5440). Gene flow was higher in I. cangae (1.715) and lower in I. serracarajensis populations (0.419). Overall, the results further show that I. serracarajensis and I. cangae are two species with considerable genetic variation and that these differences may reflect their habitats and modes of reproduction. These results should be considered in the development of effective conservation strategies for both species.


2015 ◽  
Vol 298 (8) ◽  
pp. 1479-1491 ◽  
Author(s):  
Jamal Nourinezhad ◽  
Yazdan Mazaheri ◽  
Zahra Biglari

2015 ◽  
Vol 27 (6) ◽  
pp. 507 ◽  
Author(s):  
El Mohammed ◽  
Chakir Youssef ◽  
Bargaa Rita ◽  
Barka Kaoutar ◽  
Lektib Islah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document