scholarly journals Monotone Solution of Cauchy Type Weighted Nonlocal Fractional Differential Equation

Author(s):  
Mohammed Mazhar Ul Haque ◽  
Bhausaheb R. Sontakke ◽  
Tarachand L. Holambe

In this paper we will consider a nonlinear fractional di fferential equation withweighted initial and nonlocal conditions and will obtain monotone solution by thesequence of successive approximations starting at a lower solution converges monotonicallyto the solution of the related cauchy type weighted nonlocal fractionaldi fferential equation under some suitable conditions.

2021 ◽  
Vol 7 (2) ◽  
pp. 2281-2317
Author(s):  
Yong Xian Ng ◽  
◽  
Chang Phang ◽  
Jian Rong Loh ◽  
Abdulnasir Isah ◽  
...  

<abstract><p>In this paper, we derive the explicit analytical solution of incommensurate fractional differential equation systems with fractional order $ 1 &lt; \alpha, \beta &lt; 2 $. The derivation is extended from a recently published paper by Huseynov et al. in <sup>[<xref ref-type="bibr" rid="b1">1</xref>]</sup>, which is limited for incommensurate fractional order $ 0 &lt; \alpha, \beta &lt; 1 $. The incommensurate fractional differential equation systems were first converted to Volterra integral equations. Then, the Mittag-Leffler function and Picard's successive approximations were used to obtain the analytical solution of incommensurate fractional order systems with $ 1 &lt; \alpha, \beta &lt; 2 $. The solution will be simplified via some combinatorial concepts and bivariate Mittag-Leffler function. Some special cases will be discussed, while some examples will be given at the end of this paper.</p></abstract>


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Rabha W. Ibrahim

Our main aim in this paper is to use the technique of nonexpansive operators in more general iterative and noniterative fractional differential equations (Cauchy type). The noninteger case is taken in sense of the Riemann-Liouville fractional operators. Applications are illustrated.


2021 ◽  
Vol 5 (3) ◽  
pp. 83
Author(s):  
Bilgi Görkem Yazgaç ◽  
Mürvet Kırcı

In this paper, we propose a fractional differential equation (FDE)-based approach for the estimation of instantaneous frequencies for windowed signals as a part of signal reconstruction. This approach is based on modeling bandpass filter results around the peaks of a windowed signal as fractional differential equations and linking differ-integrator parameters, thereby determining the long-range dependence on estimated instantaneous frequencies. We investigated the performance of the proposed approach with two evaluation measures and compared it to a benchmark noniterative signal reconstruction method (SPSI). The comparison was provided with different overlap parameters to investigate the performance of the proposed model concerning resolution. An additional comparison was provided by applying the proposed method and benchmark method outputs to iterative signal reconstruction algorithms. The proposed FDE method received better evaluation results in high resolution for the noniterative case and comparable results with SPSI with an increasing iteration number of iterative methods, regardless of the overlap parameter.


Sign in / Sign up

Export Citation Format

Share Document